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Abstract

The analysis of dynamic scenes in video is a very use-

ful task especially for the detection and monitoring of nat-

ural hazards such as floods and fires. In this work, we

focus on the challenging problem of real-world dynamic

scene understanding, where videos contain dynamic tex-

tures that have been recorded in the “wild”. These videos

feature large illumination variations, complex motion, oc-

clusions, camera motion, as well as significant intra-class

differences, as the motion patterns of dynamic textures of

the same category may be subject to large variations in

real world recordings. We address these issues by intro-

ducing a novel dynamic texture descriptor, the “Local Bi-

nary Pattern-flow” (LBP-flow), which is shown to be able

to accurately classify dynamic scenes whose complex mo-

tion patterns are difficult to separate using existing local

descriptors, or which cannot be modelled by statistical tech-

niques. LBP-flow builds upon existing Local Binary Pattern

(LBP) descriptors by providing a low-cost representation

of both appearance and optical flow textures, to increase

its representation capabilities. The descriptor statistics are

encoded with the Fisher vector, an informative mid-level

descriptor, while a neural network follows to reduce the

dimensionality and increase the discriminability of the en-

coded descriptor. The proposed algorithm leads to a highly

accurate spatio-temporal descriptor which achieves a very

low computational cost, enabling the deployment of our

descriptor in real world surveillance and security appli-

cations. Experiments on challenging benchmark datasets

demonstrate that it achieves recognition accuracy results

that surpass State-of-the-Art dynamic texture descriptors.

1. Introduction

Dynamic scene analysis is a very useful task in numer-

ous real world applications, such as security and disaster

management, where surveillance videos can be used for the

early detection, classification and monitoring of natural haz-

ards like floods and fires. The analysis of such videos is con-

sidered of utmost importance during natural disasters, since

it can improve situational awareness by providing early de-

tection of floods and fires. The motions in dynamic scenes

are complex, highly non-rigid, with many auto-correlations

and occlusions that render their analysis costly in terms

of computation and memory requirements. Surveillance

videos of interest in natural disasters contain dynamic tex-

tures (fire, smoke, flood) for which various methods have

been deployed either to model them using statistical and

dynamic system modeling, or to represent them with a local

descriptor, to discriminate between them and classify them.

Dynamic textures also appear in videos containing small

motions, analyzed for emotion/facial recognition using ap-

proaches based on Local Binary Patterns (LBP), which have

led to accurate classification in several applications, such as

clothing (fabric in motion), facial expressions recognition

and non-rigid pedestrian motion estimation.

In this work, we introduce the LBP-flow, which extends

and re-designs the LBP to the spatio-temporal domain, by

applying it both to illumination values and optical flow es-

timates in highly complex dynamic textures. Additionally,

inspired from recent work in hybrid classification architec-

tures [4], we propose a novel encoding scheme that com-

bines Fisher encoding with Neural Network in order to rec-

ognize crisis events or classify dynamic textures in videos

samples. As shown in the experimental section (Sec. 4), not

only our LBP-Flow descriptor is capable of achieving near

real-time performance at a low computational cost, and with

improved accuracy in comparison to existing dynamic tex-

ture recognition methods, but also lead to State-of-the-Art

accuracy rates when encoded with the suggested hybrid ar-

chitecture. It is thus a promising solution for analyzing dy-

namic scenes in security and surveillance applications, as

it can provide early warning and timely detection of events

such as smoke, fire, flooding, among others.
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Figure 1. Block diagram of the overall framework: Activity Areas(AAs) are applied on each video frame and optical flow matrix in order

to sample and aggregate LBP descriptors in the three spatio-temporal domains (x,y,t). LBP-Flow is constructed by concatenating them and

fed to a GMM to extract the visual vocabulary. Fisher vectors are extracted for each video sample in the training and testing set based on

this vocabulary and the results are given in a Neural Network to reduce the dimensionality of the descriptor and make the descriptors even

more discriminative.

2. Related Work

Dynamic texture recognition methods can be separated

into roughly two categories. The first one involves global

modelling of video sequences, based on Linear Dynami-

cal Systems (LDS) [3], [7], [12]. More recently, LDS have

been extended to a stabilized higher order LDS (shLDS)

in [6], whose multidimensional time series are transformed

into Grassmannian points to form a novel descriptor, the

Histograms of Grassmannian Points (HoGP). The resulting

algorithm [6] achieved very high accuracy rates both in the

recognition of dynamic textures, as well as of more rigid

motions that characterize human actions. However, the con-

version of the multidimensional motion time-series to the

Grassmannian manifold is computationally costly, and thus

not appropriate for security and real-time surveillance pur-

poses.

While LDS models seem quite promising for represent-

ing dynamic textures, their application to classifying the

wider set of motion patterns found in dynamic scenes has

been shown to perform poorly [16]. The complex, stochas-

tic character of dynamic textures makes their precise model-

ing very challenging, so a new category of dynamic texture

representations is created, based on local, spatio-temporal

features that describe moving texture dynamics by estimat-

ing local variations and statistics of intensity and optical

flow values. Early techniques involved the accumulation

of local spatio-temporal features to describe texture dynam-

ics using appearance features like GIST [13], motion his-

tograms such as HOF [10], and spatio-temporal oriented

energy features [5], which describe energy changes in the

intensity of sampled images. However, the coarse quanti-

zation of GIST and the orientation invariance of HOF do

not allow them to detect dynamic textures with accuracy.

The computational cost of spatio-temporal oriented energy

features [5] makes them impractical for surveillance and se-

curity purposes. Spatial energies are also used in a Bag of

Words (BoW) framework in [8], where they are combined

with color information and a space-time pyramidal repre-

sentation, leading to very accurate dynamic scene recog-

nition on challenging benchmark datasets. However, this

method is computationally costly due to the estimation of

spatio-temporal energies, their encoding and learning by

linear SVM, making it inappropriate for real time, or near-

real time, applications.

Accurate texture classification has been achieved in im-

ages using Local Binary Patterns (LBP’s ), whose promis-

ing results have led to a number of extensions of it as

a dynamic texture descriptor. Volume Local Binary Pat-

terns (VLBP) [19] and LBP-TOP [18] are among the earlier

methods, however they can easily reach a dimensionality of

214 to 226, which is impractical in real-world applications

involving large amounts of data that are to be processed in

near real time. Mettes et al. recently introduced a hybrid

spatio-temporal extension of LBP in [11], which stacks the

descriptor in time to obtain temporal information. It com-

plements this descriptor with a Fourier temporal statistic,

but requires large training datasets. The method achieved

very high accuracy rates when discriminating between wa-
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ter and non-water scenes, however it missed many video

frames containing a crisis (i.e. fire, smoke, flood), as it

would need related samples in the training data in order to

detect them. Thus, the method of [11] cannot be realized

in real world security/surveillance scenarios, where crisis

events may be unknown, with no related training samples.

In this work, we overcome the limitations of the State-

of-the-Art (SoA) by extending LBP over time to build our

LBP-Flow descriptor. LBP-Flow follows the same concept

as VLBP and LBP-TOP by its application to the temporal

domain. However, it goes beyond both of these methods as:

1. it is applied to the optical flow values, whereas VLBP,

LBP-TOP are applied to intensity differences over

short temporal windows, which cannot sufficiently

capture the motion taking place, or may be sensitive

to local noise, such as camera noise/motion and com-

pression artefacts

2. it addresses the issue of the high-dimensionality of the

descriptor by effectively reducing its size without los-

ing discriminative ability.

3. it leverages both shallow and deep attributes by com-

bining Fisher and Neural Networks in a robust, SoA

scheme that can accurately recognize and discriminate

fire, smoke and water patterns from other moving pat-

tern, and also perform multi-class recognition at no

further computational burden.

3. Methodology

The LBP-Flow descriptor introduced in this work, is a

spatio-temporal descriptor tailored to the nature of dynamic

scenes, as it encodes not only appearance, but also motion-

induced variations as texture. This results in the improved

discrimination between dynamic textures with different ap-

pearance, such as water and vegetation, but also with dif-

ferent motion statistics, such as rapidly versus slowly flow-

ing water. Inspired by the success of LBP in face recogni-

tion [1] and pedestrian detection [17] where it is combined

with HOG appearance descriptor, we extend it over time to

encode the optical flow values estimated in videos of dy-

namic textures. Furthermore, inspired from the recent suc-

cessful combination of intermediate(Fisher) and high level

encoding schemes(NN) in [4], we propose a hybrid classi-

fication architecture that leverages both the discriminative

and computational power of the proposed descriptor.

As a first step, the background is detected using Activ-

ity Areas (AA) [2] separating background from foreground

motion, and interest points are sampled on a dense grid in

each video frame. Quantized-LBP descriptors are then es-

timated for each sampled grid point over a temporal win-

dow of WLBP video frames in order to form the LBP-Flow,

which will characterize the spatio-temporal dynamics of the

region. Fisher encoding [14] is used to compute the first and

second order differences from a spatio-temporal dynamics

visual vocabulary, and fed to a Neural Network which re-

duces the dimensionality and improves the discriminability

of the descriptor. Both binary and multi-class recognition

is achieved by using either Sigmoid or Softmax as a final

NN layer respectively. Figure 1 shows the framework of the

overall system.

3.1. Activity Areas

Activity Areas (AA) are binary masks [2] that separate

background from foreground motion, based on the assump-

tion that flow estimates originate either from actual motion,

or noise, e.g. from the video capture or compression pro-

cess. These two hypotheses can be formulated as:

H0 : u0

k = zk(r)

H1 : u1

k = uk(r) + zk(r),

where r = (x, y) is the pixel under consideration, uk(r)
its actual motion value and zk(r) is induced by noise. As

shown in [2], zk(r) can be modelled by a Gaussian pdf

when optical flow is taken into account for the computa-

tion of motion vectors. Under the Gaussianity assumption

for the noisy flow values, and accumulating these motion

vectors over a temporal window WAA, we can easily elim-

inate them by estimating their Kurtosis, which is equal to

zero for Gaussian data:

G2[uk(r)] =
3

WAA(WAA − 1)

WAA
∑

k=1

uk(r)
4 −

− WAA + 2

WAA(WAA − 1)
(

WAA
∑

k=1

uk(r)
2)2.

Thus the AA has zero values at pixels where the kurtosis

values tend to zero, as in that case the motion is noise-

induced:

AA(r) =

{

0 if G2(r) < thAA

1 else

where thAA is statistically determined equal to 2 · 10e−2

based on the experiments that we performed on Dyntex dy-

namic texture dataset.

3.2. LBP­Flow computation

After extracting the AA in each video frame, we apply

a dense grid to sample a set of interest points from the re-

gions of interest(i.e. where AA(r) = 1), and use them to

define LBP-Flow. LBP-Flow builds upon the original LBP,

which is defined at each pixel r by the difference between

its intensity value f(r) and that of neighboring pixels (rp)
within a radius R. In this work, LBP-Flow is extended to
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include the values of the optical flow around pixel r so as to

include motion information. Thus:

LBPP,R(r) =

P−1
∑

p=0

s(f(r)− f(rp))2
p,

where f(r) corresponds to its intensity or optical flow

value, P represents the number of neighbour points around

each sampled interest point r, and R is the radius of

its neighbourhood, with the neighbouring points around

pixel r at coordinates rp = (rx + R cos(2πp/P ), ry −
R sin(2πp/P )). The threshold function s(z) of LBP is

given by:

s(z) =

{

0 z < 0
1 z ≥ 0.

The novelty of LBP-Flow is that it represents both intensity

and optical flow variations over space and time. In our LBP

representation, texture is spatially represented by calculat-

ing local binary patterns in two directions, on the x−y axes,

as in the original LBP. A novel representation of motion as a

temporal texture is introduced by calculating LBP over the

optical flow values in the x and y directions, x− t and y− t
respectively. This inclusion of motion information in the

LBP-Flow representation enriches the spatial textual char-

acteristics with a binary representation of the dynamic tex-

ture motion, introducing redundancies in the resulting de-

scriptor, which render it more robust. By this procedure,

we obtain the LBP descriptors for appearance and motion,

namely LBPxy , LBPxt and LBPyt respectively.

The dimensionality of the resulting LBPxy , LBPxt and

LBPyt is then reduced by using a variation of the original

LBP descriptor, the uniform quantized LBP descriptor [18],

which uses 58 bins to describe a 3 × 3 area around each

interest point instead of the 256 bins commonly used. To

achieve this, uniform quantized LBP takes into account that

there is one quantized pattern for each LBP, with exactly

one transition from 0 to 1, and one from 1 to 0 when scanned

counter-clockwise. Thus, the uniform quantized LBP rep-

resents the same pattern with a descriptor whose dimension

is equal to 1/4 of the original LBP [18]. The LBP-Flow

descriptor is constructed by accumulating LBPxy , LBPxt

and LBPyt over WLBP = 30 video frames and concate-

nating them into a single vector of 5220 bins whose dimen-

sions are much lower than those of the latest SoA LBP [18],

which reaches dimensions of 214 and 226. The representa-

tion framework of the LBP-Flow is shown in Figure 2.

3.3. Fisher encoding

LBP-Flow includes both spatial and spatiotemporal in-

formation, which introduce redundancies that are expected

to increase its robustness, however it remains a low-level lo-

cal representation, so it may still contain noise-induced arte-

facts. To eliminate this noise, we build a visual vocabulary

for LBP-Flow using Gaussian Mixture Model (GMM) clus-

tering followed by Fisher encoding [14]. The LBP-Flow is

represented as x̄i ∈ RD; i = {1, ..., N}, and the pre-trained

visual vocabulary is defined by the corresponding mean, co-

variance and prior probability weights for L Gaussian mod-

els {µj , Σj , πj ; j ∈ RL} of x̄i. Fisher encoding is then

based on:

f1j =
1

N
√
πj

N
∑

i=1

qijΣ
−1/2
j (x̄i − µ̄j),

f2j =
1

N
√

2πj

N
∑

i=1

qij [(x̄i − µ̄j)Σ
−1

j (x̄i − µ̄j)− 1],

where qij is the Gaussian soft assignment of descriptor xi to

the j-th Gaussian. These distances are concatenated to form

the final Fisher vector FX = [f11, f21, ..., f1L, f2L], which

characterizes the dynamic texture in each video. The vec-

tors are then normalized using a Hellinger kernel K(g, h),
which leads to SoA results [14]. For two Fisher vectors

g ∈ R2KD and h ∈ R2KD, K(g, h) is computed by:

K(g, h) =

L
∑

j=1

sign(gj)sign(hj)
√

‖gj‖ · ‖hj‖,

where L is the number of Gaussians, D the dimensionality

of the descriptor and 2LD the final Fisher vector size.

3.4. Neural Network classification

The proposed Neural Network (NN) architecture is in-

spired from the successful results that were presented in [4]

and consists of three layers: the dimensionality reduction

layer, the hidden layer and the classification layer. While

the proposed NN framework uses only two Fully Connected

layers, the statistical power that Fisher vectors encapsulate

in their scheme passes in the NN as well and leads to a

highly discriminative vector.

Two recognition tasks were taken into account, depend-

ing on the nature of the classification problem: A binary

one for discriminating crisis events from others (i.e. water,

fire and smoke recognition) and a multi-class problem to

discriminate among various dynamic textures and moving

objects. The first one is specifically tailored for serious real

case scenarios that require a fast and accurate recognition of

a crisis event, while the second one is performed in order to

prove the discrimination power of our framework in more

general scenarios.

For binary classification, we found that just 6 neural

nodes in the first and second layer of the network are suffi-

cient to create an accurate recognition scheme. A sigmoid

kernel is then used as a final layer to classify crisis events

from others. For multi-class recognition 128 neural nodes

are used in the first layer, 64 features in the second layer
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Figure 2. LBP-flow computation

and a softmax layer for classification purposes. This results

in a much more complicated network, which is expected, as

it requires more attributes than the binary one to discrimi-

nate among the classes. In both cases cross entropy loss is

computed in order to measure the error in the output, while

all the units in the hidden layers are rectified linear units

(ReLu). Dropout has also been considered to reduce over-

fitting but did not improve our results and was eventually

omitted from the scheme. To train each network the ef-

ficient Adam optimizer [9], a gradient-based optimization

algorithm based on adaptive estimates of lower-order mo-

ments, is used with all parameters set at default.

4. Experiments

Experiments and comparisons with the SoA took place

on three challenging benchmark datasets, namely Dyn-

tex [15], videoWaterDatabase [11] and MovingVistas [16].

All datasets were split into 1/3 for testing and 2/3 for train-

ing, creating 3 different train/test splits to evaluate the per-

formance of our algorithm. The dimension of the initial

vector LPB-Flow was reduced via PCA from 5220 to 80
and 32 cluster centers where chosen to represent the visual

vocabulary. WAA = 10 and WLBP = 30 were selected

after empirical cross validation performed on the Dyntex

dataset [15]. SVM classification is used when we need to

measure the recognition accuracy of LBP-Flow, while Soft-

Max and Sigmoid is used when we apply the hybrid NN

scheme.

Dyntex is one of the earliest and most renowned bench-

mark datasets for dynamic textures, containing a wide range

of videos, such as fires, smoke, clouds, flags, waves, vege-

tation among others. In our first experiment, we split the

dataset into water and non-water scenes to test the water

classification accuracy of our descriptor. As we can see

in Table 1, both schemes of LBP-Flow surpass VLBP and

VLBP-TOP, but our accuracy is a little lower than that re-

ported by Mettes in [11]. However, Mettes et al [11] do not

specify which 80 videos were chosen from Dyntex to evalu-

ate their descriptor, so a direct comparison with their results

cannot be provided.

Method Score

LBP-Flow 92.74%

LBP-Flow+NN 94.35%

LBP-Fourier [11] 100%

VLBP [19] 90.0%

LBP-TOP [18] 87.5%
Table 1. Comparison with SoA water/non-water binary classifica-

tion on the Dyntex dataset.

In the second experiment that we performed in Dyntex

we performed multi-class scene recognition so as to exam-

ine the applicability of our descriptor and our hybrid ar-

chitecture in surveillance scenarios involving other kinds

of dynamic textures. Table 2 shows that our descriptor

achieves high accuracy in fire (82.1% for fire and 91.7%
for smoke) and water-related (100% for CalmWater, 77.8%
for Fountains, 88% for HomeWater and 100% for Sea) dis-

crimination. In the lower-right edge of Table 2, it can be

seen that water-related classes are confused for each other,

rather than other categories of dynamic textures, thus en-

hancing our claim that LBP-Flow will robustly detect water-

related dynamic textures. Comparisons with SoA multi-

class recognition [6] in Table 3 show that our algorithm

leads to more accurate results, especially for water and fire-

related scenarios, than the more sophisticated but computa-

tionally expensive HOGP descriptor.

In recognition problems, feature extraction is usually

the most time-consuming step. However, for the Dyntex

database, the extraction of LBP-Flow features required only

about 2.65 fps, due to the simple structure of LBP-flow.

Its low computational cost makes it appropriate for secu-

rity and surveillance applications, where videos are often

recorded at 7−8 fps, making our approach nearly real-time.

VideoWaterDatabase introduced in [11] contains 256
high definition videos, where the presence of water needs

to be detected. This dataset contains water samples in foun-

tains, waves, river and non-water video segments, as well

as other dynamic texutres, like fires, clouds, flags. The pat-

terns between the two classes are quite similar and very dif-
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Table 2. Multi-class classification accuracy of LBP-Flow over all Dyntex classes, when the hybrid(left) and the shallow(right) schemes

are used.

HOGP [6] LBP-Flow LBP-Flow+NN

Fire - 82.1% 78.6%

Smoke 83.0% 91.7% 91.7%

Vegetation 81.0 78.6% 92.9%

Flags 56.0% 66.7% 75.0%

Fountain 88.0% 55.6% 77.8%

Calm Water 81.0% 85.0% 100%

Sea 81.0% 95.8% 100%

HomeWater - 88.0% 84.0%

All - 75.2% 88.8%
Table 3. Comparison with SoA on smoke and water related classes

Method Score

LBP-Flow 98.3%

LBP-Flow+NN 98.8%

LBP-Fourier [11] 96.5%

VLBP [19] 93.5%

LBP-TOP [18] 93.3%
Table 4. Recognition accuracy on the VideoWaterDatabase bench-

mark dataset.

ficult to model. Comparisons with other dynamic texture

modeling methods based on LBP are provided in Table 4,

where it can be seen that our hybrid descriptor leads to the

higher accuracy than the SoA, providing robust recogni-

tion results on challenging video datasets like VideoWater-

Database. For the VideoWaterDatabase videos, the extrac-

tion of LBP-Flow features required about 2.05 fps, showing

that our method is indeed computationally efficient, even

for such challenging and complex datasets.

Moving vistas was introduced in [16] and is the last and

the most challenging of all datasets, as it contains video

samples of low quality using a moving camera, different

viewpoints and significant illumination changes. Water-

related dynamic textures appear in videos of: Boiling Water,

Iceberg Collapse, Fountain, Waves, Waterfall, Whirlpool,

while other types of dynamic textures include: Tornadoes,

Chaotic Traffic, Landslide, Smooth Traffic, Volcanic Erup-

tion, Avalanche and Forest Fire. In the first binary classi-

fication scenario, we achieved a highly accurate classifica-

Method Score

LBP-Flow 62.3%

LBP-Flow+NN 63.8%

SOE [5] 41.0%

[16] 52.0%
Table 6. Overall recognition accuracy on moving vista dataset

tion rate of 84.6% and 73.1% when our hybrid scheme and

shallow scheme were applied respectively. This shows that

LBP-Flow is more than appropriate for recognizing water-

related video samples and secondly that the hybrid frame-

work highly boosts the descriptor.

Multi-class recognition accuracy of LBP-FLow was es-

timated in our second experiment, to compare with the SoA

on scene recognition in [5], [16]. The results, presented in

Table 5 and Table 6, show that our hybrid scheme achieves

significantly better recognition rates compared to the SoA,

and at a much lower computational cost.

For the Moving vistas database, the extraction of LBP-

Flow features required about 9.7 fps, due to the lowest reso-

lution of the videos. Our method can therefore be applied to

a variety of monitoring videos in real-world scenarios, rang-

ing from low to high resolution, with near real-time perfor-

mance.

5. Conclusions

In this paper we introduce a novel descriptor that extends

the SoA LBP to the spatio-temporal domain, and particu-

larly to the optical flow values, resulting in a highly dis-

criminative and compact scheme after dimensionality re-

duction. Furthermore it introduces a hybrid classification

scheme that leverages both shallow and depth features in

order to recognise dynamic textures in an efficiently. Exper-

iments on three recent and challenging benchmark datasets

demonstrate that our approach achieves significantly higher

recognition accuracy than the SoA in a computationally effi-

cient manner. The results can be considered as an important

indicator that these techniques could be used in real world

applications such as the detection and monitoring of natu-

ral disasters (e.g. fires, floods) to improve the situational
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Table 5. Multi-class classification accuracy of LBP-Flow over all Moving Vista classes

awareness in crisis management. Future work will include

the challenging problem of spatio-temporal detection of dy-

namic textures in temporally unsegmented videos of a long

duration.
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