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Abstract

This study presents an ongoing work on a new large-
scale, user-object interaction data-set incorporating visual,
sensorial and positional modalities, which can potentially
be used for (a) assessing vision-related machine learning
models for different tasks targeting scene understanding,
such as activity recognition, visual object affordances and
object detection; (b) providing realistic interactions in the
Virtual Reality (VR) world; (c) enhancing 3D perception in
robotic applications such as manipulation.

The aim is to provide a large and diverse set of stereo
video sequences, filmed from multiple cameras and involv-
ing multiple actors, together with sensorial and positional
data recorded in our lab’s premises. The data-set is utilized
as a first effort to provide realistic haptic feedback to a user
interacting with a 3D object in a virtual environment. This
data-set is expected to bridge the aforementioned gap be-
tween theory and application and facilitate the development
of techniques which allow robots to better understand their
surroundings. A set of experiments and a preliminary anal-
ysis show promising results and demonstrate the particular
characteristics of the involved representation schemes.

1. Introduction
Over the last decade, deep learning techniques in the

computer vision domain have succeeded in understanding
and performing tasks such as object detection[2][14] and
image segmentation[15], among others, however, they have
yet to show a significant progress when it comes to bridg-
ing the gap between theory and application and in particular
when required to transfer this knowledge to robotics. The
problem of scene understanding[16] has therefore increas-
ingly gained attention in the computer vision community[7]
who now focus on developing visual methods which can
be used in real robots. Two example domains that have at-
tracted attention in the last few years and are considered
to be essential to robots understanding and interacting with
their environment are visual affordances[8][5] and haptic

feedback[13].

Besides visual and physical properties, objects can also
be characterized by their functional aspects, appropriately
named object “Affordances”. Affordances are widely used
for action prediction and anticipation. There are multiple
methods in the literature that predict future actions based on
the affordance information[10][11]. This happens because
affordances indicate a set of possible actions that can be po-
tentially performed in a given environment. This property
of affordances can be extended and used in recognizing ac-
tor’s activities in a way to completely understand a scene.
Many studies used affordances in order to recognize human
activity[19][18]. Affordances have considerable impact on
the accuracy of object recognition vision systems. The con-
textual detail provided by affordances in a scene offers im-
portant cues in object classification tasks[4][17]. Affor-
dances take object detection one step further. They offer ex-
tra knowledge providing an intuition about the object’s role
in the scene[20]. Last but not least, there is a vast amount of
literature on detailed scene understanding via categorizing
objects based on their specific functionality[3][9].

With regards to haptic feedback, and to the best of our
knowledge, the haptic sensation obtained through robotic or
virtual interaction is severely poor compared to the sensa-
tion obtained through physical interaction. In our physical
life, the haptic channel is pervasively used, such as percep-
tion of stiffness, roughness and temperature of the objects in
external world, or manipulation of these objects and motion
or force control tasks such as grasping, touching or walking
etc. In contrary, both in terms of haptic feedback received
during robotic system teleoperation[21] and during inter-
actions in a virtual world[1], haptic experiences are fairly
poor in both quantity and quality as it is difficult for robots
to learn complex representations by combining modalities,
such as vision and touch[12]. With the booming of Vir-
tual Reality (VR) in many areas such as medical simulation,
robotic teleoperation and product design, there is an urgent
requirement and a long-term goal of the respective industry
to provide an as much as possible immersive experience to
the user, aiming to improve the realism of haptic feedback
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(a) Spatial setup.

(b) Force and flex sensors placement. (c) SensorialXR glove and
HTC’s Vive tracker.

Figure 1: (a) Spatial setup. (b) Force and flex sensor placement. (c) VR data glove and Vive’s positional tracker.

for VR systems, and thus to achieve equivalent sensation
comparable to the interaction in a physical world. So far, ex-
isting VR systems have managed to provide fairly realistic
visual and auditory feedback, however they are still lacking
in providing realistic haptic feedback, especially when con-
sidering the fact that human users can perceive the physical
world through its abundant haptic properties.

In the following sections we present our ongoing effort
of building a user-object interaction data-set, which incor-
porates data recorded through visual, sensorial and posi-
tional modalities.

2. Experimental setup and components
In order to obtain the data-set that will ultimately be used

to train our deep learning models, capable of learning the in-
trinsic properties of real-life human-object interactions and
thus be able to infer corresponding realistic haptic feedback
values to a user who is interacting with various VR objects
within a VR environment, various components have been
employed to both measure values deriving from different
modalities, e.g., visual or sensory. Unity3D, an open-source
game development tool, was used to collect positional data
in its VR environment, while a Raspberry Pi was connected
to the adopted flex and pressure sensors to enable the col-
lection of sensorial data. The complete hardware and spatial
setup is shown in Figure 1(a) and individual components are
further elaborated in the following subsections.

2.1. Visual data

In order to collect data from the visual modality Re-
alSense D415 1 stereo imaging cameras were used, placed
around the table where the user-interaction was performed,
allowing capturing of a complete user-object manipulation

1https://www.intelrealsense.com/depth-camera-d415/

process in both RGB and Depth streams. Three cameras
were placed in the scene to record the interactions from
multiple perspectives.

2.2. Positional data

To obtain reliable pose sensing information, the commer-
cially available SensorialXR2 VR gloves were used, which
utilize 15 Inertial Measurement Units (IMUs) sensors to
provide pose sensing capabilities, and also 10 haptic actua-
tors capable of delivering 1024 levels of vibrational inten-
sity. Moreover, HTC’s Vive Tracker3 was also utilized by
attaching it to the VR glove, which allowed for accurate live
tracking of a hand’s position, rotation, speed and accelera-
tion within Unity3D’s VR environment during hand-object
interaction and in essence provide global hand positioning.
The VR glove and HTC’s Vive tracker are shown in Figure
1(c).

2.3. Sensorial data

Attached to the aforementioned VR gloves are 5 flex4

and 10 force FSR X 4025 6 sensors, shown in Figure 1(b),
capable of measuring flex and force values. Flex sensors
have the property that as the sensor is flexed, the resis-
tance across the sensor increases and they can therefore of-
fer measurements regarding how much each finger was bent
during the interaction. Force sensitive resistors on the other
hand, offer a small active sensing area from 0.3N to 50N
which will vary each resistance depending on how much
pressure is being applied to the sensing area. The harder
the force, the lower the resistance. They can therefore be

2https://sensorialxr.com/
3https://www.vive.com/us/accessory/vive-tracker/
4https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/FLEXSENSORREVA1.pdf
5https://www.interlinkelectronics.com/fsr-x-400
6https://www.sparkfun.com/datasheets/Sensors/Pressure/fsrguide.pdf
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used to measure the amount of force a user is applying to
each object through his fingers during an interaction with
an object.

3. Real-world manipulation data-set
Initially, 70 participants were invited to take part in mul-

tiple discrete real-life human-object interactions. Unfortu-
nately, at the time of writing and due to Covid-19 restric-
tions and lock-down measures, we were only able to per-
form 18% of total envisaged recordings. The users were
specifically asked to enter a recording room, shown in Fig-
ure 2, wear the custom data glove and perform several af-
fordances provided by several objects, grouped into four
main categories, namely ‘Tools’, ‘Kitchen tools’, ‘Office
objects’ and ‘Other’. Male and female participants were
equally distributed among the subjects and all of them were
right-handed to match the right-hand glove used in our ex-
periments. Measures were taken to minimize exposure to
possible Coronavirus infections and as a precaution a pro-
tective mask was worn by all present individuals at all times.

Figure 2: Recording room.

For each discrete recording, which lasted on an average
of 15 seconds, the data collected composed the following:

1. Three .bag files, produced by each of the three Re-
alsense cameras placed in the scene, containing both
RGB and Depth streams recorded at 15 FPS and a res-
olution of 640px width by 480px height each.

2. One json file, produced by Unity3D at a rate of 15
frames per second, which stored all data relating to the
glove and is as follows:

• Positional coordinates have been recorded for
each of the 5 fingertips and 5 palm positional
sensors from SensorialXR gloves. Also accurate
positional cordinates were given through HTC
VIVE Tracker. All these coordinates were trans-
lated into real-world coordinate system using the
camera’s intrinsic values. Respectively to every
positional coordinate part, velocity and accelera-
tion have also been recorded to json files.

• Flex values produced by the flex sensors at a rate
of 15 values per second throughout the duration
of the experiment and temporarily stored on the
Raspberry Pi for synchronization purposes be-
fore being forwarded to Unity3D. As shown in
Figure 1(b), 5 flex values were recorded per sam-
ple by flex sensors that have been attached to
SensorialXR glove.

• Force values produced by the force sensors at a
rate of 15 values per second throughout the du-
ration of the experiment and temporarily stored
on the Raspberry Pi for synchronization purposes
before being forwarded to Unity3D.As shown in
Figure 1(b), 10 force values were recorded per
sample by force sensors that have been attached
to SensorialXR glove.

In total, 13 users were able to record 69 discrete affordance
interactions using 57 objects and overall produce 317 GB
of data. Further statistical analysis of the data-set will be
provided upon completion of the recordings.

4. Realistic haptic feedback
In this section the formal methodology is described to

successfully infer haptic feedback signals to the user while
interacting with a VR object. We consider the data col-
lected as time series data, i.e., obtained through repeated
measurements over time, and thus, several sequence learn-
ing methods, such as hidden Markov models and more re-
cently established Recurrent Neural Networks were consid-
ered for implementation. Recently however, Long Short-
Term Memory (LSTM) models, a type of Recurrent Neural
Network (RNN) architecture that possesses the property of
remembering values over arbitrary intervals, have proven to
be well-suited to classify, process and predict time series
data which encompass time lags of unknown duration.

4.1. Architecture

The architecture adopted in our scenario is that of an
LSTM model. The main characteristic of an LSTM model
and its main advantage over other competitors is its ability
to remember time series data due to its insensitivity to gap
length. Compared to a traditional RNN which has the form
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of a chain of repeating modules of neural network, and the
actual repeating module has a very simple structure, such
as a single tanh layer, the LSTM’s repeating module has a
different structure and comprises of four NN layers instead
of an RNN’s single one. This is the key difference that al-
lows them to avoid the long-term dependency problem that
is inherent to RNNs.

In order to examine the fundamental functionality of an
LSTM in depth, let X(t) be an input sequence and P(t) the
corresponding target output. An LSTM then maps X(t) to
P(t) through a series of intermediate representations [6]:

I(t) = σ[WxiX(t) + WhiH(t− 1) + Bi] (1)
F(t) = σ[WxfX(t) + WhfH(t− 1) + Bf ] (2)
O(t) = σ[WxoX(t) + WhoH(t− 1) + Bo] (3)

G(t) = tanh[WxcX(t) + WhcH(t− 1) + Bc] (4)
C(t) = F(t)C(t− 1) + I(t)G(t) (5)

H(t) = O(t) tanh[C(t)] (6)
P(t) = WhpH(t) + Bp (7)

where σ(.) is a non-linear scaling factor, C(t) is the ‘inter-
nal memory’ of the LSTM and the gates I(t), F(t) and O(t)
control the degree to which the memory accumulates new
input G(t), attenuates its memory and influences the hidden
layer output H(t), respectively. The LSTM is parametrized
by the learnable weight matrices W and biases B.

Model Parameters: As said before, the fist try is to pre-
dict realistic haptic feedback inside VR environment. VR
glove has vibrators at the same position force sensors have
been placed. The goal is that haptic feedback of a specific
vibrator must be analogous to the force that has been pre-
dicted via LSTM training. So, these 10 force values were
defined as the output of LSTM. The input consisted of all
the above-mentioned hand-parts positional coordinates, ve-
locity and acceleration from inside the Unity’s VR environ-
ment, and the 5 flex values from flex sensors that have been
recorded during experiments.

4.2. Model evaluation

We performed extensive experiments, fine-tuning our
LSTM model using a variety of combinations of loss met-
rics, learning rate (lr), hidden layers, number of units of
each layer of our LSTM model. Specifically, we have
conducted experiments examining (a) Mean squared error
(MSE), Mean Absolute Error (MAE), Root Mean Square
Error (RMSE) as regression loss functions, (b) values 10−3,
10−4, 10−5 as learning rates, (c) one to three number of
hidden layers and, (d) 16, 32, 64 number of units per layer,
however, due to page limitations only the best performing
model training combination is reported. Preliminary results
(Table 1) indicate that the best results that managed to re-
duce our test set’s loss were produced when the MSE loss

function was used combined with a learning rate of 10−4, 3
hidden layers, each one containing 16 hidden units.

Metrics lr Layers Units Error
MSE

10−4 3 16
0.01204

MAE 0.01552
RMSE 0.01340

Table 1: Experimental results.

Moreover, in order to depict the qualitative aspect of our
results, we provide Figure 3, which shows a correlation be-
tween the force values collected as ground truth and the pre-
dicted force values, to be delivered as haptic signals to the
user, provided by our LSTM during inference. Prediction
diagrams do not seem to perform well, but this is something
reasonable since less than 20% of total lab experiments have
already been recorded. Performance improvement is ex-
pected by the completion of the recordings.

(a) Middle finger force values. (b) Ring finger force values

Figure 3: Ground truth vs predicted force values (normal-
ized to [0,1]) for the (a) middle finger, and (b) ring finger.

5. Conclusion and future work

In this work, we presented our ongoing work on a novel,
large-scale data-set, which can potentially be used for a va-
riety of tasks, such as scene understanding, action recogni-
tion, 3D perception, among others. We presented the exist-
ing status of our collected data-set, the equipment utilized to
record the data, the types of data recorded, as well as a pre-
liminary analysis of evaluation metrics considered for the
task of providing realistic haptic-feedback in a virtual en-
vironment, conceptualized by Unity3D game development
software.

Due to Covid-19 related restrictions, we were not able to
complete the development of the data-set, however we aim
to do so in the near future. In order to evaluate the model
in real-life scenarios we plan on conducting user tests and
upon completion asking users to complete a questionnaire
using a 7-point Likert scale.

4



References
[1] Wang Dangxiao, Guo Yuan, Liu Shiyi, Yuru Zhang, Xu

Weiliang, and Xiao Jing. Haptic display for virtual reality:
progress and challenges. Virtual Reality & Intelligent Hard-
ware, 1(2):136–162, 2019. 1

[2] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman,
Ning Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep
convolutional activation feature for generic visual recogni-
tion. In International conference on machine learning, pages
647–655. PMLR, 2014. 1

[3] Helmut Grabner, Juergen Gall, and Luc Van Gool. What
makes a chair a chair? In CVPR 2011, pages 1529–1536.
IEEE, 2011. 1

[4] Abhinav Gupta, Scott Satkin, Alexei A Efros, and Martial
Hebert. From 3d scene geometry to human workspace. In
CVPR 2011, pages 1961–1968. IEEE, 2011. 1

[5] Mohammed Hassanin, Salman Khan, and Murat Tahtali. Vi-
sual affordance and function understanding: A survey. arXiv
preprint arXiv:1807.06775, 2018. 1

[6] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997. 4

[7] Derek Hoiem, James Hays, Jianxiong Xiao, and Aditya
Khosla. Guest editorial: Scene understanding. International
Journal of Computer Vision, 112(2):131–132, 2015. 1

[8] Khimya Khetarpal, Zafarali Ahmed, Gheorghe Comanici,
David Abel, and Doina Precup. What can i do here? a theory
of affordances in reinforcement learning. In International
Conference on Machine Learning, pages 5243–5253. PMLR,
2020. 1

[9] Hedvig Kjellström, Javier Romero, and Danica Kragić. Vi-
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