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ABSTRACT In a multi-view 3D reconstruction problem, the task is to infer the 3D shape of an object from
various images taken from different viewpoints. Transformer-based networks have demonstrated their ability
to achieve high performance in such problems, but they face challenges in identifying the optimal way to
merge the different views in order to estimate with great fidelity the 3D shape of the object. This work
aims to address this issue by proposing a novel approach to compute information-rich inter-view features by
combining image tokens with similar distinctive characteristics among the different views dynamically. This
is achieved by leveraging the self-attention mechanism of a Transformer, enhanced with a multi-manifold
attention module, to estimate the importance of image tokens on-the-fly and re-arrange them among the
different views in a way that improves the viewpoint merging procedure and the 3D reconstruction results.
Experiments on ShapeNet and Pix3D validate the ability of the proposed method to achieve state-of-the-art
performance in both multi-view and single-view 3D object reconstruction.

INDEX TERMS Dynamic grouping, multi-manifold attention, multi-view 3D reconstruction, transformer,
voxel representation.

I. INTRODUCTION
The task of 3D object reconstruction is a fundamental
research problem with several applications across diverse
fields, including computer vision, computer graphics, robot
navigation, medical imaging, virtual reality (VR), and
Non-Fungible Token (NFT) creation [22]. One of the main
challenges of 3D object reconstruction lies in the accurate
identification andmatching of distinctive features of an object
across multiple images, which is crucial for determining the
spatial properties of the object to reconstruct it with high
fidelity [23].

With the technological breakthroughs in AI, several deep
learning methods rely on Convolutional Neural Networks
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(CNNs) or Recurrent Neural Networks (RNNs) to solve the
3D object reconstruction task with great success [3], [8],
[9], [10], [24]. Recently, Transformer networks have also
been utilized for 3D object reconstruction, demonstrating
outstanding performance. Transformers operate by dividing
input images into several smaller patches, which are then
processed in parallel. Self-attention mechanisms are also
utilized to learn correlations among image patches (or
tokens) and enhance the network’s understanding for its
task. By leveraging image tokens and attention operations,
several studies have employed Transformers to explore the
association of tokens within a view and across different
views, leading to improvements in the final 3D reconstruction
results [1], [2], [4], [5].

While early Transformer-based 3D object reconstruction
methods process view-specific image tokens independently

160690

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0000-4647-6459
https://orcid.org/0000-0002-7391-6875
https://orcid.org/0000-0003-3814-6710
https://orcid.org/0000-0003-1584-7047
https://orcid.org/0000-0002-0030-275X


G. Kalitsios et al.: Dynamic Grouping With Multi-Manifold Attention for Multi-View 3D Object Reconstruction

FIGURE 1. While previous approaches utilize (a) short- and (b) long-range
token groupings based on fixed positions, thus mixing foreground object
parts and background, the proposed method (c) performs an
attention-based dynamic grouping, allowing the disentanglement of
foreground object parts from the background in the subsequent token
groups.

to extract descriptive intra-view representations [4], [5],
recent approaches group image tokens across views either
through clustering [2] or based on fixed image positions [1].
However, such approaches either model only intra-view
relations or identify both intra- and inter-view relations at
high computational cost or by employing rigid grouping
strategies, in which the groupings are not learnable and the
grouped tokens contain both foreground object parts and
background regions. To overcome these issues, the proposed
Transformer-based 3D reconstruction method introduces a
novel dynamic grouping strategy that enables the network
to learn on its own the token groupings across the different
views dynamically. By leveraging the attention mechanism
of Transformers, the proposed grouping strategy evaluates
the importance of the tokens based on their attention values,
allowing the disentanglement of foreground object parts from
the background and the grouping of relevant tokens across
views, as shown in Figure 1. Coupled with a multi-manifold
attention mechanism that boosts the discrimination ability
of the computed attention maps, the proposed method can
model both intra- and inter-view associations to infer with
high accuracy the 3D shape of an object in the form of
voxels. In summary, the main contributions of this work
are:

• A novel dynamic grouping strategy that effectively
models inter-view relations by merging image tokens
across views on-the-fly based on their attention
values.

• The attention mechanism is enhanced by projecting
tokens in different manifolds for optimal attention
estimation and token grouping results.

• Experimental results on ShapeNet and Pix3D ver-
ify the state-of-the-art performance of the proposed
method in both multi- and single-view 3D object
reconstruction.

II. RELATED WORK
In multi-view 3D object reconstruction, traditional meth-
ods [25], [26] relied on handcrafted feature extraction and
matching across views, whichwas time-consuming and prone
to inaccuracies as highly overlapping views and similar

lighting conditions were assumed. Early deep learning 3D
object reconstruction techniques were based on CNN [3],
[7], [9], [10], [28], RNN [8], [27], Generative Adversarial
Networks (GANs) [31], [32] and Variational Autoen-
coders (VAEs) [33], [34], [35] that automatically processed
and fused multiple view-specific images without searching
for discriminative common features across views. Transform-
ers have been met with great research interest when they were
initially introduced for natural language processing [30] and
later modified for computer vision tasks [29]. For 3D object
reconstruction, in particular, Transformer-based methods
leverage image patch embeddings to capture intra-view corre-
lations and then fuse the view-specific representations using
pooling operations [5], [12] or Transformer encoders [4], [6],
[11] that jointly model all 2D views into 3D reconstruction
outputs. Despite achieving promising results, these methods
cannot capture strong inter-view relations as they treat all
image tokens across views equally.

To robustly model multi-view associations, several
researchers have lately proposed token grouping techniques
to merge similar tokens across views and enhance the
accuracy of 3D object reconstruction. STTN [36] addresses
this problem in the task of video inpainting by employing
full-range attention (i.e., attention among all image tokens
across views), leading to high computational cost. Tomitigate
this issue, DSTT [37] employs a short-range grouping
attention strategy that enables the model to capture local
information, while paying less attention to non-local rela-
tionships. However, this technique works best when images
demonstrate temporal coherence and thus it is of limited
usage in 3D object reconstruction. To address this problem,
UMIFormer [2] employed nearest neighbor clustering to
group similar tokens and estimate both intra-view and inter-
view relations. On the other hand, LRGT [1] merged tokens
from fixed positions in the images, successfully capturing
global inter-view associations, but the grouped tokens do not
necessarily represent similar characteristics of the images.
Our work introduces a novel dynamic grouping strategy
that allows the Transformer network to dynamically group
tokens across views based on the computed attention maps.
In this way, tokens sharing similar distinctive characteristics
across views, being either foreground or background, are
grouped together, thus enabling the decoupling of infor-
mation and significantly simplifying the 3D reconstruction
procedure.

III. METHODOLOGY
The proposed multi-view 3D object reconstruction method,
named shortly DGMA, is based on a Transformer-based
architecture modified with a novel module that performs
enhanced multi-manifold self-attention and dynamic token
grouping, as illustrated in Figure 2. The motivation behind
DGMA lies in the need for an optimal way to merge
tokens to extract information-rich inter-view features and
reconstruct with high fidelity a 3D object. DGMA achieves
this dynamically (i.e., during the network training) by
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FIGURE 2. Illustration of the architecture of the proposed DGMA method.

adjusting on its own the token groupings based on attention
values, enabling the efficient disentanglement of foreground
and background information, as shown in Figure 3. Given a
view image set I = {I1, I2, . . . , IV } for V number of views,
it is initially split into patches through a 2D convolution
operation before being fed into a number N of Transformer
Encoders that processes these patches and groups them into
more descriptive representations.

A. MULTI-MANIFOLD ATTENTION COMPUTATION
To enhance the discrimination power of the computed
attention maps inside the Transformer encoders and improve
the ability of DGMA to group relevant tokens across views,
the tokens are projected in two different manifolds and
distances are computed in each manifold separately before
being fused together. With the projection in manifolds,
the aim is to leverage the different geometrical properties
of the manifolds and derive a better estimation of the
actual distances among tokens, leading to improved attention
maps and better reconstruction results, as demonstrated
in other computer vision tasks, such as image classifi-
cation [21]. In this work, DGMA utilizes the Euclidean
and Semi Positive Definite (SPD) manifolds for time
efficiency and adds new layer normalization units to scale
the computed distance maps in the range [0,1] for improved
accuracy.

Given view-specific image patches or tokens X v =

{xvi } ∈ RP×D, with P and D denoting their number and
dimensionality, respectively, for each view image Iv, query
and key vectors Qv,Kv ∈ RP×D are initially computed
through linear projection operations. Then, the distance map
DvE ∈ RP×P of the vectors in the Euclidean manifold is
computed as follows:

DvE (Qv,Kv) =
QvKT

v
√
D

(1)

On the other hand, for the computation of the distance
map in the SPD manifold, a fully connected layer is initially
employed to down-sample the query and key vectors to the

covariance size S, resulting in a set of new vectors Q′
v,K

′
v ∈

RP×S . Afterwards, the covariance matricesCQv ,CKv ∈ RP×P

of the query and key vectors are computed as:

CQv = cov(Q′
v) = E[(Q′

v − E[Q′
v])(Q

′
v − E[Q′

v])
T ] (2)

CKv = cov(K ′
v) = E[(K ′

v − E[K ′
v])(K

′
v − E[K ′

v])
T ] (3)

The distance map DvSPD ∈ RP×P between the covariance
matrices in the Semi-Positive Definite (SPD)manifold is then
computed using the Frobenius norm ∥ · ∥F as:

DvSPD(CQv ,CKv ) =
∥CQv − CKv∥F

√
S

(4)

The attentionmapAv = {ai,j} ∈ RP×P for a single view v is
finally given by the concatenation of the normalized distance
maps as:

Av = f (LN (DvE ),LN (DvSPD)) (5)

In Eq. 5, LN denotes the layer normalization operation,
while f (·) denotes a convolutional operation that fuses the
distance maps, followed by a softmax operation to compute
the actual attention values.

B. TOKEN SORTING
The aim of token sorting is to identify which tokens carry
important information according to the Transformer encoder.
Tokens with high attention values represent distinctive
characteristics of the input that facilitate the network in
making correct decisions. DGMA leverages this knowledge
to disentangle important foreground parts of the object from
irrelevant parts of the object or the background. Given the
view-specific attention map Av, computed in Eq. 5, the
attention values of all tokens in the representation X v are
taken as the diagonal elements of the attention map. Then, the
tokens X v are sorted from the smallest to the highest attention
values, giving rise to the token representation Y v ∈ RP×D:

Y v = {sort(xvi )|ai,i < ai+1,i+1}, for i = 1, . . . ,P− 1 (6)

In the representation Y v, the first tokens usually represent
irrelevant information (e.g., image background), while the
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FIGURE 3. Illustration of the proposed dynamic grouping strategy. Leveraging the computed attention maps, view-specific tokens
are sorted dynamically based on their attention values and placed in groups with each group, indicated by a different color,
containing tokens of similar distinctive characteristics.

last tokens carry significant information (e.g., foreground
object parts).

C. TOKEN GROUPING
The token grouping aims to gather tokens that represent simi-
lar distinctive characteristics across views in the same groups.
In this way, the 3D reconstruction process is simplified as
each token group carry information from specific parts of
the input image, being foreground or background, leading to
the modelling of information-rich inter-view relations and the
significant improvement in the reconstruction results. Given
the sorted tokens yvi in the representation Y v, this procedure
gathers each consecutive 4 tokens across all V views and
group them together, forming a number of groupings:

Gj = {y14(j−1)+1:4j, y
2
4(j−1)+1:4j, . . . , y

V
4(j−1)+1:4j}

for j = 1, . . . ,P/4 (7)

It can be observed that the first groups contain tokens
with least significant information across views, while the
latest tokens contain tokens with discriminative information
across views. The groupings Gj are finally concatenated and
fed to the next layer of the network. Figure 3 illustrates
this procedure, with each token group shown in different
color.

D. 3D VOLUME ESTIMATION
The token representation after the last Transformer encoder
is finally compressed using the similar-token merger [2] and
an initial 3D representation of size 4 × 4 × 4 × 768 is
created. Afterwards, the initial 3D representation passes
through a decoder [1] that up-scales the 3D representation to
the required size of 32 × 32 × 32. Finally, a refiner with a

U-Net architecture [3] is employed to refine and improve the
3D representation by adding details, leading to the final 3D
reconstructed object.

IV. EXPERIMENTS
A. DATASETS AND EVALUATION METRICS
To evaluate the proposed method, two well-known datasets,
namely ShapeNet [13] and Pix3D [14] are employed.
ShapeNet is a large dataset comprising 55 object categories
and 51, 300 3D models. For fair comparison with other
works, a subset of ShapeNet, consisting of 43, 783 objects
rendered from 24 distinct viewpoints and from 13 categories,
is utilized [9]. In contrast to the artificially generated
objects of ShapeNet, Pix3D comprises aligned 3D models
paired with real-world 2D images. To explore the gen-
eralization ability of the proposed method, a subset of
2894 samples, including untruncated and unoccluded view
images, from the chair category of Pix3D is used for
evaluation.

Similar to previous works, the 3D reconstruction per-
formance is evaluated using 3D Intersection over Union
(IoU) and F-Score@1%, with higher values indicating
better performance for both metrics. IoU compares the
predicted occupancy volume against the ground truth volume
by quantifying the ratio of intersecting voxels between
both volumes to their union, thus ensuring the calcula-
tion’s independence from object size. On the other hand,
F-Score@1% [15] evaluates the surface reconstruction qual-
ity by quantifying the percentage of points on object surfaces
that fall within a predetermined threshold distance (1%).
In line with [9], the predicted volumes are converted to
point clouds and object surfaces are generated using the
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marching cubes algorithm [16]. Subsequently, 8, 192 points
are sampled from the object surface to compute the F-Score
between predictions and ground truth.

B. IMPLEMENTATION DETAILS
For fair comparison with other works [1], [2], two models,
namely DGMA and DGMA+, are considered that share
the same network architecture but differ in the number of
views used for training (3 views for DGMA and 8 views
for DGMA+). The choice of fixed view counts is based
on the observation that maintaining a consistent view count
leads to superior performance compared to varying it between
steps [4]. At each iteration, views are randomly sampled
from the set of 24 views per object. To obtain the occupancy
voxel grid, thresholds of 0.5 and 0.4 are applied for DGMA
and DGMA+, respectively. The input images are of size
224 × 224, while the voxelized output has a size of
32 × 32 × 32. To initialize the Transformer encoders,
the pre-trained model of DeiT-B [20] is employed. The
number of Transformer encoders N is set to 12, and the
DGMA mechanism is incorporated in Transformers 5, 7,
9 and 11, while the remaining ones use the vanilla self-
attention mechanism. The covariance size S is set to 12 after
conducting ablation experiments. The loss function employed
is the Dice loss [38], which is effective for addressing
significant imbalances in the voxel grid. The training process
involves the use of AdamW optimizer [19], with parameters
β1 = 0.9 and β2 = 0.999 and training for 110 epochs
with a batch size of 16. The learning rate is initialized
at 1e − 4 and is subsequently reduced by a factor of
0.1 after 60 and 90 epochs. DGMA and DGMA+ were
trained on two NVIDIA RTX 3090 Ti GPUs. The code
and model weights will be made publicly available on
GitHub.1

C. EVALUATION ON SHAPENET
A comparison of DGMA and DGMA+ against state-of-
the-art (SoTA) approaches using the ShapeNet dataset is
conducted and the results are presented in Tables 1 and 2
in terms of IoU and F-Score@1%, respectively. It can be
deduced that DGMA and DGMA+ significantly outper-
form the SoTA approaches for different number of views,
ranging from 1 to 20. For the single-view reconstruction,
DGMA achieves 0.6987 IoU, outperforming the second best
LRGT with 0.6962 IoU. On the other hand, for 20 views,
DGMA+ achieves SoTA performance with 0.7974 IoU,
0.7% higher than the accuracy of LRGT+. The performance
improvements are even more pronounced in F-Score@1%,
indicating that DGMA and DGMA+ can reconstruct with
higher accuracy the object surface.

When it comes to multi-view reconstruction, a main
concern is how well a model can handle a large number
of inputs. To this end, DGMA and DGMA+ are compared
against the SoTA works of [1], [2], [3] for 24-view inputs

1https://github.com/VCLdimitrop/DGMA

of the ShapeNet dataset. Tables 3 and 4 present the IoU
and F-Score@1% results across the 13 ShapeNet categories.
It can be seen that DGMA and DGMA+ exhibit superior
performance compared to their competitors. For the display
object category, specifically, DGMA+ outperforms LRGT+

by 1.13% in IoU and 1.43% in F-Score@1%, while an
improvement of 1.23% in IoU and 1.97% in F-Score@1%
can be noticed for the lamp object category. Similar
improvements can be observed for the other object categories
as well, except from telephone, in which UMIFormer+
slightly outperforms the proposed models.

Finally, Figure 4 visualizes six object reconstructions
utilizing 5 and 20 input views from the test set of ShapeNet.
DGMA and DGMA+ demonstrate superior performance in
accurately reconstructing both the general shape and intricate
details of the objects. This underscores the robust learning
capability of the proposed dynamic grouping strategy and the
multi-manifold attention mechanism, particularly in captur-
ing fine-grained details. In addition, DGMA and DGMA+

manage to reduce noise levels and produce smoother surfaces
with higher accuracy and fidelity than the other tested 3D
reconstruction techniques.

The aim of experimenting with Pix3D is to evaluate the
generalization capacity of the proposed method in single-
view 3D reconstruction under real-world scenarios with
complex backgrounds. Consistent with prior studies [9],
[10], a training dataset was formed by utilizing the chair
objects from ShapeNet, with view images rendered by
RenderforCNN [17] and random backgrounds from the SUN
database [18]. Each object in the dataset is represented
by a set of 60 images captured from various viewpoints.
Table 5 compares the performance of the proposed method
against other SoTA approaches, presented in [1], [2], [3].
All methods were trained for single-view 3D reconstruction
using the generated training dataset and according to the
implementation details provided in their respective papers.
In LRGT†, both LGA and IFS were removed and substituted
with the original self-attention layer. In a similar fashion,
DGMA† is the result of substituting all DGMA modules
with vanilla self-attention. Since DGMA is designed to
group multi-view inputs, the performance of the proposed
method is hindered in Pix3D that contains only a single
view for each object. From the results of Table 5, it can
be deduced that DGMA outperforms all other methods
by at least 0.8% in IoU and 1.5% in F1-score@1%. The
removal of the DGMA modules leads to an additional
performance improvement, making DGMA† achieve SoTA
performance, surpassing LRGT† by 0.6% in IoU and 0.3% in
F1-score@1%. Finally, Figure 5 performs a qualitative
analysis of the 3D reconstruction results in Pix3D. It can be
seen that the proposed DGMA and DGMA† can accurately
estimate the 3D shapes of the objects by successfully
reconstructing the legs of the chairs, while other SoTA
approaches face challenges in this area. The results in
Pix3D demonstrate that the proposed method can excel even
in scenarios where objects and background share similar
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TABLE 1. Performance evaluation of multi-view 3D reconstruction methods on ShapeNet using IoU ↑. Best results are highlighted in bold.

TABLE 2. Performance evaluation of multi-view 3D reconstruction methods on ShapeNet using F1-score@1% ↑. Best results are highlighted in bold.

TABLE 3. Performance comparison of 24-view 3D reconstruction on the ShapeNet test dataset using Intersection over Union (IoU). The highest score in
each category is highlighted in bold.

textures, objects are positioned at varying distances within
complex backgrounds that cast shadows on the objects.

D. ABLATION STUDY
To evaluate the contribution of each component, i.e.,
Dynamic Grouping (DG) strategy and enhanced

Multi-Manifold Attention (MA), in the performance of the
proposed method, we test DGMA for 3 input views on
ShapeNet. Table 6 presents the experimental results using
the metric of IoU. In all experiments, the same decoder
and refiner networks are utilized to ensure consistency.
More specifically, the decoder network is a Transformer
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TABLE 4. Performance comparison of 24-view 3D reconstruction on the ShapeNet test dataset using F1-score@1%. The highest score in each category is
highlighted in bold.

FIGURE 4. Qualitative results on ShapeNet test set with 5 and 20 input views.

TABLE 5. Evaluation on Pix3D using IoU / F1-score@1% ↑.

decoder [1], while the refiner is based on the U-Net
architecture, as proposed in [3]. This decision enables a
clearer analysis of the role of each DGMA component in
the 3D reconstruction performance of the proposed network

TABLE 6. Evaluation of various components of DGMA on ShapeNet using
IoU.

architecture, depicted in Figure 2. Initially, a baseline, without
the addition of the proposed DG and MA components,
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FIGURE 5. Single-view 3D reconstruction results on Pix3D dataset.

TABLE 7. Experimentation with the covariance size S on ShapeNet using
IoU.

is evaluated, leading to a performance of 0.7588 IoU for
3 views and 0.7742 IoU for 20 views. The introduction of the
enhanced MA mechanism, which leverages both Euclidean
and SPD manifolds to compute highly accurate attention
maps, leads to an improvement in 3D reconstruction quality,
achieving an IoU of 0.7605 for 3 views and 0.7795 for
20 views. On the other hand, the addition of the novel DG
strategy enhances the 3D reconstruction accuracy (i.e., IoU of
0.7609 for 3 views and 0.7807 for 20 views) by intelligently
grouping image tokens based on their attention values,
facilitating better feature disentanglement and simplification
of the reconstruction process. Finally, the use of both DG
and MA components further boosts the 3D reconstruction
performance of the proposed method, leading to best results
for varying number of views, ranging from 3 to 20.

Table 7 presents IoU scores for the covariance size S
taking the values of 8, 12, and 16. Notably, a size of

8 results in a distinct performance decline, indicating a loss
of essential information during the dimensionality reduction.
On the other hand, a size of 16 leads to a slight performance
deterioration due to information redundancy. As a result,
the size of 12 was chosen for striking the best balance
between information retention, reconstruction accuracy and
computational efficiency.

V. CONCLUSION
This work proposes a Transformer-based 3D object recon-
struction method that relies on a novel dynamic token
grouping strategy that enables the network to merge tokens
across different views on-the-fly based on their attention
values. In addition, an enhanced multi-manifold attention
mechanism is utilized, allowing the computation of a more
descriptive attention map to better support the proposed token
grouping strategy. The experimental results verify the ability
of the proposed method to achieve SoTA results in both
multi-view and single-view 3D reconstruction tasks.
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