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An AI-based system offering automatic DR-enhanced AR for indoor
scenes

Category: System

Figure 1: Imagine that you want to redesign your living space and replace existing furniture with new ones. Most of us are
not so creative, and conceiving how a place would look is challenging. AR technology allows for inserting virtual objects in
real environments, and can thus, assist in better understanding how new furniture would fit in our place. However, this won’t
work in already furnished environments. These existing objects will disrupt the AR experience, and in most cases will have
the opposite of the intended effect, leaving the users confused. We propose a system consisting of various AI services for
enabling next-generation AR indoor (re-)planning and design experiences. Our system strives for user-friendliness and bypasses
error-prone and cumbersome user scanning processes. Instead, users only require a single 360o camera capture that produces a
spherical panorama of their indoor space. Then, our AI-based system automatically generates a high-level understanding of the
scene, both semantically and structurally, enabling automatic selection of objects to be removed or replaced. This is driven by
employing DR technology that incorporates the inferred scene structural prior to generate plausible hallucinations, eventually
offering a compelling and effective AR experience. Top row shows the overall concept and higher level component connections,
while the bottom row shows an actual example from the Structured3D dataset, where a bed is replaced within a room. It is worth
noticing that apart from the virtual bed placement, all other steps are automatic, that the diminished room with the original bed
removed respects the room’s layout, and also that a significantly large object was replaced.

ABSTRACT

In this work, we present an AI-based Augmented Reality (AR) sys-
tem for indoor planning and refurbishing applications. AR can be
an important medium for such applications, as it facilitates more
effective concept conveyance, and additionally acts as an efficient
and immediate designer-to-client communication channel. However,
since AR only overlays, and cannot replace or remove, our system
relies on Diminished Reality (DR) to support deployment to real-
world already furnished indoor scenes. Further, and contrary to the
traditional mobile AR application approach, our system offers on-
demand Virtual Reality (VR) viewing, relying on spherical (360o)
panoramas, capitalizing on their user-friendliness for indoor scene
capturing. Given that our system is an integration of different AI
services, we analyze its performance differentials concerning the
components comprising it. This analysis is both quantitative and
qualitative, with the latter realized through user surveys, and pro-
vides a complete systemic assessment of an attempt for a user-facing,
automatic AR/DR system.

Index Terms: Augmented Reality—indoor AR—Diminished
Reality—Artificial intelligence User Study—360o panoramas—
Image Inpainting—Computer Vision

1 INTRODUCTION

Interior design can be a challenging and stressing process, requiring
bidirectional communication between users and experts. Experts
usually express their ideas in traditional 2D drawings produced by
Computer Aided Design (CAD) software, making it difficult for the

end-users to comprehend them. AR is an emerging technology that
allows users to superimpose Computer-Generated (CG) elements
over the real world. In the particular case of interior design, AR can
be used for placing virtual 3D objects within the real environment
bridging the communication gap between experts (designers) and
non-experts (clients). In this way, AR serves as a medium between
digitized concepts and the real scene, facilitating effective and ef-
ficient communication and feedback between its users, improving
the iterative design process. Indicatively, an AR system for rear-
ranging a furniture layout was proposed in [15], while in [12] a
system employing a dynamic user interface for placing 3D virtual
furniture models was developed. However, both aforementioned
systems required multiple QR markers to allow users to physically
position the virtual furniture.

Even though AR enables the interaction with virtual objects in-
side real environments, its nature is purely of additive nature, with
a practical problem befalling when working in occupied and filled
indoor scenes as is the case for AR home design applications [20].
Concepts like redecoration cannot be delivered solely through AR
technology, as users would only be capable of superimposing CG ele-
ments on top of existing real-world objects, hindering understanding
due to a conflicting mental response. To overcome this, AR needs
to be supported by DR which can diminish existing objects prior to
overlaying new virtual ones, and provide users with an enhanced
view to assess furniture fit into their spaces. DR is an intriguing
technology that can enable novel concepts. One example is inter-
car see-through vision, which aims at prevent accidents [14] and
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diminishes (i.e. ”removes”) the front car. In this particular case DR
is driven by multi-view observations and view synthesis. There are
cases though, where no view behind the removed object is available,
and then DR needs to hallucinate content, typically referred to as
infilling or inpainting [10]. A pioneering work in the DR domain
was presented by [5], where a patch-based image inpainting method
was developed. Follow up work [8] moved beyond image based
diminishing and transitioned towards respecting scene geometry by
exploiting SLAM-based localisation. More recently, an inpainting
method for non-planar scenes was developed [16] that considered
both color and depth information. Still, in both cases, manual selec-
tion of the region to be removed in the image domain was required.
To allow for easier selection of the object to be diminished in in-
door scenes for interior design, [17] used a manually positioned
and scaled volume to enclose the object of interest. In addition,
the floor plane was identified by inserting a marker into the scene.
Real-time 6 degrees-of-freedom DR without manual object selection
is challenging [13], and requires a 3D reconstruction of the scene
without the object of interest but with the diminishing area anno-
tated, limiting its flexibility. When considering AR interior home
refurnishing, where quickly prototyping ideas is very important,
minimizing interactions is very important, as users will also need to
position the new elements into the scene as well [7].

Still, all of the aforementioned studies work in narrow field of
view inputs, limiting the amount of information of each scene and
thus degrading their performance on big objects (e.g.furniture), while
at the same time they do not strictly respect the structure of the envi-
ronment. To overcome this, moving cameras are employed relying
on SLAM [16] or wider field of view captures [7], but they limit
user friendliness and are more error-prone. In this work, we present
a system that addresses the challenges of cumbersome user dimin-
ished area selection and user scanning, delivering DR-enhanced,
AR for indoor scene planning and design. To achieve that, our sys-
tem is AI-based, operating on a single monocular image capture,
exploiting recent advances in data-driven inpainting methods [6].
In addition, albeit image-based, it takes the scene’s structure into
account, an important cue for the targeted application domain. Our
main contributions are summarised below:

• A novel AI-based DR-enhanced AR system with various data-
driven components connected in parallel and cascade structure
using only monocular 360o images as input.

• A holistic system evaluation including a systemic point of
view analysis to identify the weakest link in the system, and a
user-study focused on the importance and relevance of DR in
indoor planning applications.

2 SYSTEM OVERVIEW

Figure 2 shows a high level overview of our system comprising
two main sub-systems, and the nominal data flow among the vari-
ous components. Each component is an AI model, trained on the
Structured3D dataset [23].

As presented in Figure 2 the two sub-systems operate in cascade,
while the DR sub-system also includes a parallel component con-
nection. The DR sub-system first processes the input panoramic
image by estimating the scene’s layout and segmenting the distinct
objects inside the scene. Then, for each segmented object in the
scene, the inpainting component is invoked in order to diminish
the object and prepare the input for the AR superimposition. Since
data-driven models typically operate in lower resolutions than re-
quired for panorama viewing, the AR sub-system first invokes a
super-resolution component to rescale the diminished area back to
360o viewing resolution. AR is user-driven by positioning elements
into the scene that interact with the masked regions depending on
their projection to select the appropriate diminished panorama. Still,
users may simply require to remove an object from the scene which

is straightforwardly supported. In the following subsections the
different AI building blocks comprising our automatic DR-enhanced
AR system are presented.

2.1 Object Segmentation Component
In order to diminish an object from a residential indoor scene, the
object’s pixel-aligned area within the image must be available. For
this purpose, we employ a semantic segmentation network in order
to infer objects mask for a set of a priori selected classes, commonly
present in residential scenes. We use the DeepLabv3 architecture [3]
with a ResNet50 [4] backbone, which has shown reliable and ro-
bust results in segmentation tasks, offering a great compromise
between accuracy and speed. The network was supervised using
cross entropy and trained for 133 epochs using the Adam optimiza-
tion algorithm [9], with default parameters, a learning rate of 0.0002
and a scheduler halving it every 20 epochs.

2.2 Layout Estimation Component
Another prerequisite of the inpainting component is the scene’s
dense layout segmentation (i.e. the per-pixel classification into
the ceiling, wall or floor classes). This is required to preserve the
scene’s structure during diminishing which is a very important cue
for the downstream applications (i.e. planning or designing). We use
the HorizonNet model [19] to estimate the locations of the scene’s
junctions.

2.3 Inpainting Component
The core of our AI-based DR sub-system is the inpainting AI model
which is responsible for object diminishing. Apart from the input
panorama, it additionally requires an object mask and the scene’s
layout segmentation map, as depicted in Figure 2. The latter provides
the structure of the scene as corner positions, which are subsequently
reconstructed as the dense layout, while the former is a requisite for
specifying the object to be diminished. We adopt a structure-aware
360o inpainting model [2] that uses SEAN residual blocks [24] to
aid in hallucinate plausible content with semantic coherency in the
diminished region. SEAN blocks leverage the structural information
provided by the input semantic maps (the layout segmentation in our
case), and uses it as structural guidance.

2.4 Super-resolution Component
For alleviating the aforementioned issue concerning the low-
resolution of the panoramas to be processed, we resort to a
lightweight super-resolution model [22], in order to upscale the
diminished result up to (×4) times. That way, we offer results
appropriate for panorama viewers, without degrading their visual
quality.

2.5 Implementation & Orchestration
Our models are trained with PyTorch [11] and delivered as services
using TorchServe [1]. We adopt a common communication interface
for each of our components designed around callback URLs, with
all inputs and outputs delivered as endpoints to either retrieve (GET)
or submit (POST) data. This interface makes our system highly
modular, since the communication interface is decoupled from the
back-end functionality of each component.

The system orchestration is realised as a web server, where each
upload triggers a chain of events as follows. At first, the object
segmentation and layout estimation models are invoked to estimate
the object masks and the room layout. Since we rely on semantic
segmentation, we perform connected component analysis to resolve
potentially different instances, and split each segmentation map
into multiple per-class and object masks. In improve robustness,
we use the convex hull for each mask in a attempt to decouple
the diminished region shape from the result (the inpainting model
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Figure 2: Overview of the proposed automatic DR-enhanced 360o AR system. The system can be dissected into two high level sub-systems,
the DR one the left and the AR one the right, operating in cascade. The former is responsible for the automatic diminishing of the scene and
the later for the user-driven augmentation. For a given scene, captured by a 360o camera, the input panorama x is fed to the system. The
scene’s junctions L(x) and objects’ masks S(x) are first estimated in parallel by the corresponding data-driven components, with L and S being
the layout and segmentation AI models respectively. Then, for each separate object mask segmented in the scene, the data-driven inpainting
component is invoked I(x,L(x),S(x)), with I being the respective AI model. Diminishing is achieved by inpainting the object’s mask in a
structure-aware manner using the dense layout map that facilitates the preservation of the wall-ceiling/floor boundaries. The result y is a
diminished scene for that particular object. Subsequently, the result is up-sampled by invoking R(y), where R is a super-resolution model,
and the higher resolution panorama is ready to be augmented by the virtual 3D object that the user positions into the scene, producing the
DR-enhanced AR 360o image z.

is trained similarly). Similarly, the junction estimates are post-
processed to generate a dense layout map by first connecting the
top and bottom boundaries, and then identifying the corresponding
structural labels across each column. Finally, for all object masks,
the inpainting service is called, with its result fed into the super-
resolution service and then composited on the original panorama.
The outputs are then ready to be queried by the AR component that
positions the 3D object, whose renders interact with the masks on
the image domain to retrieve the appropriate result.

3 EXPERIMENTAL SETUP METHODOLOGY

The evaluation undertaken for the presented AI-based DR-enhanced
AR system follows two routes. On the one hand, we seek to assess
the DR sub-system’s behaviour (Section 3.1), while on the other
hand, we aim at validating the complete system’s efficacy and goals
(Section 3.2). For the former, we opt for an objective evaluation
using photoconsistency metrics using complete-diminished pairs,
while for the latter we employ subjective scoring using pre-authored
scenes.

Given that our system’s component have been trained on the
Structured3D dataset [23], we use samples from the corresponding
test set for both the objective and subjective experiments. Struc-
tured3D provides photo-realistic panoramic images of residential
rooms, room layout annotation, object segmentation masks, as well
as an empty room configuration of each scene that has all foreground
(i.e. furniture) removed. The latter data address the most challenging
part of objectively evaluating DR systems, which is the lack paired
data where the objects of interest are removed. To simulate indoor
(re-)planning/design settings, we focus our evaluation on the {chair,
bed, sofa, table, cabinet} class set.

3.1 Component Ablation
The DR sub-system comprises three different AI components. When
considering it as a sum of its parts, we only need to evaluate the
result of the diminished output against an empty scene. Yet two
layout and segmentation components that operate in parallel, and
cascade their outputs to the inpainting component, can also propa-
gate their errors. Those errors for each separate AI component can
be accumulated, affecting the overall performance of the system.
Given that each part of this sub-system is an AI model performing a
distinct task, its performance can be evaluated in isolation from the
complete sub-system. Reasonably, as performance improves, it is ex-
pected that the final result will also be improved. Nonetheless, from
a system analysis perspective, it is important to identify the weak-
est link, the component whose system performance relies mostly
upon, and thus affects the most the outcome of the system. As a

result, we ablate the system’s components using differential analysis,
where the component is bypassed and instead, a perfect prediction is
used (the annotated metadata). Consequently, Figure 3 presents the
component ablation setup for the DR sub-system, with the layout
estimation and segmentation components ablated in isolation and
jointly. The latter experiment allows us to assess the performance
of the inpainting component both absolutely, using the metrics, as
well as relatively, with respect to the other ablated components’ per-
formance degradation. We use the Mean Absolute Error (MAE),
the Peak Signal-to-Noise Ratio (PSNR), the Structured Similarity
Index Metric (SSIM) and the Perceptual Image Patch Similarity
(LPIPS) [21] metrics on the results and compare over the objects’
masked regions. LPIPS measures the perceptual similarity between
two images based on a VGG pretrained network [18]. It has been
shown that it accounts for several parts of human perception, in
contrast with PSNR. Due to the nature of DR to hallucinate realistic
content, we consider it as our primary evaluation metric. For the
pixelwise metrics (PSNR & MAE) the union of the ground truth
and predicted masks was used to more strictly penalize erroneous
segmentations under these photoconsistency metrics. Still, for the
local (window-based SSIM) and global (CNN-based LPIPS) metrics,
the entire images were used.

3.2 User Study
While the objective analysis can help in identifying critical compo-
nents and assess the system’s overall performance, the end result
cannot be quantitatively assessed. This is either because ground truth
is not necessarily available, or due to the subjectivity of the results.
Still, end-user appreciation is the ultimate goal and as a result, we
additionally performed a user survey for the entire system’s outputs.
We used remote questionnaires that were distributed to 38 users split
in two sub-groups, one having no knowledge regarding its inner
workings (i.e. Group A), and the other knowledgeable regarding
AI (i.e. Group B). The questionnaires required the participants to
rate the appearance of a masked area from each one of 5 different
scenes. An interactive panorama viewer was used, with the initial
viewpoint bearing looking at the object to be removed. For each
scene, users first were allowed to freely navigate the entire scene in
3 degrees-of-freedom, then an annotated panorama with the object
to be removed or replaced was presented to them. This process
ensures that users would not get lost within the 360o field-of-view,
and would understand the task at hand. Afterwards, users were
asked to score the appearance of the previously marked area, once
presented with the object removed (i.e. pure DR), and then once
with a virtual object replacing the previous one (i.e. DR-enhanced
AR). After all scenes were evaluated, users were asked to rate the
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5 scenes again, this time without DR, scoring the result of the pure
virtual object superimposition on the existing real object (i.e. pure
AR). This last step was isolated from the previous ones to remove
any bias when scoring DR results. Scoring was based on a 5-point
Liker scale, resulting into aggregated mean opinion scores (MOS).
Figure 4 depicts samples used in the survey.

(a) None (b) Layout (c) Segmentation (d) Both

Figure 3: Component ablation experiments setup visualized with a
vertical macro view of the DR sub-system of Figure 2. (a) refers
to the experiments where both room layout and object masks are
estimated by the system’s corresponding data-driven components,
(b) the layout path is ablated, by replacing the estimations with
the annotated ground truth while preserving the segmentation mask
estimates, (c) the dual configuration to (b), with the segmentation
path ablated and the layout estimations preserved, and (d) where
both components are replaced by the annotated ground truth layout
and object masks.

Table 1: Quantitative results assessing the DR sub-system output by
ablating its components. Arrows denote direction of better perfor-
mance.

Experiment PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓
yLS 29.61 0.9393 0.0131 0.1127
yLS 29.13 0.9353 0.0134 0.1149
yLS 27.37 0.9126 0.0166 0.1259
yLS 27.86 0.9189 0.0158 0.1225

4 ANALYSIS

Before presenting the results of our experiments, it is worth noticing
the potential sources of errors. Since the inpainting component is
dependant on the results of the layout and segmentation models, it is
expected that any errors in these components will be accumulated in
the final diminished result. Under-segmenting an object may result in
erroneous diminishing of scenes, since artifacts of the old object will
be present around the inpainted region. Similarly, over-segmenting
may potentially remove important relevant objects like chairs next
to a table, resulting in uncanny visuals. Another potential source
of error is the layout junction localization. The inpainting model
heavily depends on the layout of the input, as described in Section2.3.
Given that the boundaries reconstructed from the junctions are used
to generate the dense layout segmentation map used to driven the
SEAN decoding blocks, such errors will propagate into both style
code generation, as well as the diminished area boundary separating
the different structural areas. As a result, even slight errors on the
junctions’ coordinates will translate to larger miss-classified regions,
manifesting to severe diminishing distortions.

Figure 4: Example survey scene types. The first column depicts
the original panorama, the second column the panorama with the
object removed (i.e. pure DR), the third column, the one with the
virtual furniture added in the diminished scene (i.e. DR-enhanced
AR), and the final column, the one with the virtual object added
without previously removing the existing object (i.e. pure AR).

4.1 Objective Evaluation
Table 1 shows the quantitative results for the experiments described
in Section 3.1. The first row which showcases best performance is
case (d) of Figure 3, where both models are replaced with perfect
estimates. This is in contrast to the last row, corresponding to case
(a) of Figure 3, which relies on all models’ predictions. Interestingly,
cases (b) and (c) are the most interesting ones as they present us
with the weakest link of the DR sub-system, which is the layout esti-
mation model, given that when replaced with the annotated layouts,
performance consistently increases. As the segmentation model
produces reasonable results, the sparser junction localization errors
propagate deeper into the diminished result, which is reasonable
as the structural segmentation is responsible for both style code
extraction and boundary preservation.

4.2 Subjective Evaluation
Figure 5 presents the results of the user survey. The left columns ag-
gregate MOS scores across all scenes, while the remaining columns
present the results for each scene in sequence. The top row presents
the results for all subjects, while the bottom row splits them into the
two different groups, those not familiar with AI (i.e. Group A) and
those experienced with it (i.e. Group B). From these results it is evi-
dent that purely diminished scenes were rated lower than diminished
scenes with augmentations overlaid. This is expected as superimpos-
ing content on the DR result may potentially hide defects. Further,
the final scenes without DR where the virtual object was simply
overlaid on the actual ones, without removing them, scored lower
than the scenes where the real objects had been diminished/removed.
Nevertheless, the statistical confidence is lower and this is partly
expected as not all scenes may require DR. Indeed there are cases
when the objects are of similar size and shape that render DR as
not that important. However, it also signifies that for the remaining
cases, the availability of the functionality is very important and may
even surpass the need for delivering high quality DR results.

Regarding the two user groups, those familiar with AI presented
with larger discrepancies between the different scene types, albeit
the ranking across both groups remained the same.

5 CONCLUSION

In this work we have presented a system that can drive user-facing
applications for interior design. The focus of our system is on us-
ability as it relies on 360o image acquisition of scenes, compared to
scanning processes that tax users and are more error prone. Further,
we lift the requirement for manually marking the diminished region
and seek to preserve the room structure during diminishing which
is highly relevant for the targeted application domain. Our system
is purely AI-based, a fact that introduces the need for assessing
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All Scenes Scene#1 Scene#2 Scene#3 Scene#4 Scene#5

Figure 5: Results of the user survey. The first row depicts the total average rating for all the three cases, i.e. pure DR (empty), DR-enhanced AR
(DR), pure AR (AR), across all scenes (first column) as well as for each scene separately in the following columns. Similarly, the second row
depicts the same average rating split per each sub-group participating in the study (A & B, not familiar with AI and those knowledgeable about
it respectively).

error propagation between its different components. To that end, we
present a system ablation analysis, accompanied by a user survey
that showcases the need for DR in indoor AR planning. Nonethe-
less, our work operates directly on the image domain (i.e. 2D),
and besides the benefits this introduces, it inevitably only offers
perspective views and neglects occlusion effects. Another limitation
is that the current system has been only verified with synthetic data.
The Structure3D dataset offers annotations for all sub-tasks apart
from the super-resolution one, a trait that real-world datasets will
not easily provide. Apart from that, the application to in-the-wild
real world data is expected to reduce performance, which will re-
quire revisiting our analysis. Future work will focus on overcoming
these challenges by integrated geometric inference (e.g. depth) to
support more advanced features like occlusions and lighting, and
transitioning to real world domain training data and validation.
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