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Abstract: In dynamic and unpredictable environments, the precise localization of first responders and
rescuers is crucial for effective incident response. This paper introduces a novel approach leveraging
three complementary localization modalities: visual-based, Galileo-based, and inertial-based. Each
modality contributes uniquely to the final Fusion tool, facilitating seamless indoor and outdoor
localization, offering a robust and accurate localization solution without reliance on pre-existing in-
frastructure, essential for maintaining responder safety and optimizing operational effectiveness. The
visual-based localization method utilizes an RGB camera coupled with a modified implementation of
the ORB-SLAM2 method, enabling operation with or without prior area scanning. The Galileo-based
localization method employs a lightweight prototype equipped with a high-accuracy GNSS receiver
board, tailored to meet the specific needs of first responders. The inertial-based localization method
utilizes sensor fusion, primarily leveraging smartphone inertial measurement units, to predict and
adjust first responders’ positions incrementally, compensating for the GPS signal attenuation indoors.
A comprehensive validation test involving various environmental conditions was carried out to
demonstrate the efficacy of the proposed fused localization tool. Our results show that our proposed
solution always provides a location regardless of the conditions (indoors, outdoors, etc.), with an
overall mean error of 1.73 m.

Keywords: multi-modal localization; self-localization; seamless fusion; sensor fusion; first responders;
visual localization; Galileo satellite navigation; inertial navigation

1. Introduction

Thousands of rescue operations (ROs) are conducted each year all over the world.
Detailed US statistics [1], indicative of the developed world, reveal that the lives saved/lives
lost ratio, after first responder (FR) intervention, progressed from 14.9 in the 1990s to 22.6
in the 2000s and to 23 in the 2010s. While the empirical data pinpoint that the operational
efficiency is reaching a plateau, globalization-induced mobility and climate change-related
factors, together with the global population increase, continue to fuel the number of
incidents that require FR attention. ROs are inherently stressful events where minor delays
in decisionmaking or suboptimal procedures, such as inaccurate pathfinding or unwise
task assignments due to incomplete or incorrect field perception, can easily become fatal.
This not only poses risks to the victims but also endangers the operators involved. The
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International Forum to Advance First Responder Innovation has identified ten common
global capability gaps, with “the ability to know the location of responders and their
proximity to risks and hazards in real time” [2] ranking as the number one gap. This
underscores the critical importance of self-localization and accurate positioning as errors
in the provided locations can lead to disorientation and potentially create new dangerous
situations. Therefore, reliable and accurate positioning is a fundamental requirement for
any self-localization technique.

Location-based systems have proven to be essential tools not only in emergency op-
erations, leveraging a wide array of technologies such as WiFi, Bluetooth, other wireless
sensors, cameras, the GPS, GNSS devices, and drones, but also in a multitude of other
critical application areas. Beyond emergency response, these technologies have been sig-
nificantly applied in smart energy management, intelligent HVAC (Heating, Ventilation,
and Air Conditioning) controls, point-of-interest identification, and occupancy prediction.
For instance, intelligent energy management systems utilize the location to optimize the
energy consumption based on actual and forecasted building occupancy [3]. Similarly,
in the realm of HVAC control, the real-time location allows for the dynamic adjustment
of the temperature and air quality in different zones, thus enhancing the efficiency and
comfort [4]. In the context of identifying points of interest and predicting occupancy, local-
ization technologies enable systems to provide users with relevant contextual information,
as well as to anticipate space usage patterns for more efficient management [5]. These
applications demonstrate the versatility and value of location-based systems in improving
the operational efficiency, safety, and user experience across multiple domains.

While wireless signal-based techniques, such as WiFi, Bluetooth, and UWB, along with
fingerprinting methods, have demonstrated significant potential in location-based services,
their application in emergency and rescue operations faces inherent limitations [6]. These
techniques generally require pre-deployed infrastructure or nodes, which can be a major
constraint in disaster scenarios where the existing infrastructure may be damaged or entirely
non-functional [7]. Furthermore, fingerprinting methods necessitate the prior knowledge of
the environment through the collection of signal strength maps, a process that is not feasible
in the dynamic or rapidly changing conditions typical of emergency situations [8]. The
reliability of these techniques can also be severely compromised by environmental factors,
such as interference, obstructions, and signal attenuation, which are often exacerbated in
chaotic environments [9]. In addition, the deployment and maintenance of the required
infrastructure can be costly and time-consuming, limiting the scalability and flexibility
needed for an effective emergency response. Given these challenges, relying solely on
these signal-based and fingerprinting techniques for emergency and rescue tasks may
not provide the robustness and immediacy needed to operate effectively in critical life-
threatening situations.

In addressing these common in-field challenges, the aim of this work is to empower
FRs and their commanding entities with the real-time spatial information they need to
consistently achieve their objectives. Specifically, we propose and evaluate a multi-modal
localization system tailored to the needs of FRs operating in dynamic and unpredictable
environments. By seamlessly integrating data from inertial sensors, a Global Navigation
Satellite System (GNSS), and visual sensors, our system aims to provide accurate and
reliable positioning information both indoors and outdoors. Fusing information from
diverse sources can mitigate the innate limitations of individual modalities and potentially
provide more robust positioning information, particularly in challenging environments
where a single modality may be insufficient. From an operational point of view, seamless
tracking is essential for swift and correct decisionmaking during distressing situations. By
providing FRs with visualized current locations within the area of interest, they can make
better judgments about their movements. This heightened level of awareness is expected to
improve various aspects of FRs’ operational performance, including better area coverage,
spatially reliable reporting, improved pathfinding, and the avoidance of threats related to
disorientation. Finally, from a commander’s point of view, the visualized real-time location
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information of all the team members greatly simplifies commanding and enhances the
reactions to potential mishaps.

The novelty and primary aim of this paper can be summarized as follows:

• The FRs need an all-encompassing localization approach. It should provide rea-
sonable locations in all environments, like indoor/outdoor scenarios, dark rooms,
smoky/dusty environments, and under harsh conditions. We provide three different
tools that are designed for different conditions and that are able to complement each
other. Depending on the scenario and in the case that one tool is not working prop-
erly, the system is able to automatically switch to the results of another tool that is
able to provide a location update in that respective environment. The incorporation
of various situations and solutions marks a significant advancement over previous
studies [10–12], which depend solely on a single method for a specific scenario. Addi-
tionally, the majority of the existing research relies on Wireless Sensor Networks that
are pre-deployed in the monitored environments [13–15].

• Typically, all the available signals are fused in one algorithm—e.g., in a Simultaneous
Localization and Mapping (SLAM) [16,17] approach or another sensor fusion ap-
proach [18–20]—to provide reasonable localization results. The complexity of sensor
fusion escalates significantly when the sensors involved lack precision, often resulting
in suboptimal localization and mapping outputs. Traditional methods that rely on
integrating imprecise signals can lead to increased error propagation and reduced
system reliability [21]. In contrast, our proposed high-level fusion method enhances
the system’s accuracy and dependability. By leveraging the modularity and integrat-
ing multiple robust sources for positional data, our approach not only mitigates the
issues associated with the precision of individual sensors but also ensures that the
overall system remains resilient against sensor inaccuracies. In contrast to that, in this
paper, we fuse the signals at a higher level. This approach provides modularity and
robustness to the system since, at most times, there are multiple sources from which
to retrieve positional information.

• In this combinatory but simultaneously redundant scheme, the individual tools can
benefit from each other. For instance, the Visual self-localization tool can utilize the
Fusion or Galileo tools to be initialized faster. Also, the inertial-based localization tool
can utilize the rest of the tools to correct its expected drift so as to be as accurate as pos-
sible when it is really needed. Contrastingly, most of the previously presented works
are contingent upon the simultaneous operation of all the methods and systems to
perform effective fusion, thereby risking significant losses in accuracy if an additional
sensor integral to the fusion process is absent or malfunctions. These approaches often
lack the modular flexibility inherent in our system, which allows for independent
operation or collaborative enhancement among the various tools.

• One of the pivotal strengths of this system lies in its development and testing within
realistic operational environments, specifically tailored for use by FRs. Unlike the ma-
jority of the proposed solutions, which are often evaluated in controlled or simulated
settings [22,23], this approach enables a direct comparison of the experimental tool
results with real-world accuracy. Additionally, it assesses the system’s viability for
real-time application by experienced FRs in active scenarios. This method not only
underscores the practical relevance of our system but also enhances its reliability and
effectiveness in genuine operational conditions.

This document is organized into five sections. The Introduction (Section 1) sets the
groundwork for the study by defining the problem that is addressed and highlighting
the main points of our solution. Next, the Related Work (Section 2) presents extensive
background information on the individual localization modalities and on other fusion
solutions. Subsequently, in the Methodology (Section 3), we present the details regarding
our system architecture, the deployment platform, and all four of the tools developed. In
this section, we describe the inner workings of each individual self-localization tool, as well
as our proposed fused solution. Continuing, in the Results and Analysis (Section 4), we
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detail the experimental setup and present the outcomes of our study in both a quantitative
and qualitative manner. Finally, in the Discussion (Section 5), we summarize the outcome
of this work and provide some final remarks.

2. Related Work

In exploring the rich landscape of navigation and localization techniques, our investi-
gation encompasses a nuanced examination of diverse methodologies. Our exploration
incorporates different dimensions of localization, ranging from visual perception to the
utilization of Galileo signals, the integration of inertial sensing technologies, as well as the
fusion of the three. By considering each aspect independently in the following subsections,
we gain a comprehensive understanding of their respective strengths and limitations.

2.1. Visual Self-Localization

The problem of self-localization is one of the tasks that, despite being natural to hu-
mans and most species—and we have clear evidence that it can be solved purely visually
utilizing a combination of prior knowledge and intelligence—has been mostly approached
indirectly through abstractions and modeling. Part of the reason is that Artificial Intel-
ligence (AI) was not sophisticated enough to tackle the problem efficiently in the image
domain, hence the indirect approach. This is why the most advanced solutions today are
hybrid, also involving satellite and inertial positioning. Visual-based self-localization can
be viewed as the new frontier of the field, where the upcoming rise of Artificial Intelli-
gence meets the proliferation of miniaturized, powerful, and accessible devices, pushing
mechanics a step forward towards the holy grail we call the “human condition”.

Visual localization has attracted much attention in recent years due to its key role
in several tasks, such as virtual reality, augmented reality, robotics, autonomous driving,
etc. [24]. There are two main approaches that dominate the field: structure-based methods
and image-based methods. The former represent the scene via a 3D model and estimate
the pose of a query image by directly matching 2D features to 3D points [25,26] or by
matching 3D features to 3D points using a semantic representation of the scene [27]. On the
other hand, image-based localization (IBL) was initially formulated as an image retrieval
problem focused on matching a query image to an image database with geo-locations [28].
Following the recent advances in other computer vision tasks using deep learning, the
authors in [29] introduced a Convolutional Neural Network (CNN) with a novel layer
inspired by the Vector of Locally Aggregated Descriptors (VLAD). However, the features
extracted from time-varying objects, such as pedestrians and trees, or ubiquitous objects,
like vehicles and fences, can introduce misleading cues into the geo-localization process.
Tackling these issues, the authors in [30] introduced an end-to-end Contextual Reweighting
Network (CRN) that predicts the importance of each region in the feature map based on
the image context. An alternative to image-based localization is direct 6DoF camera pose
regression [31,32]. Extending PoseNet, the authors in [33] introduced more sophisticated
loss functions, albeit information of the scene geometry is needed. Other approaches in-
volve indexing-based techniques using a collection of previously collected panoramas [34].
Presently, the state of the art combines cross-view matching between images of distinct
domains (aerial, panoramas, and perspective), and it can offer even higher accuracy orienta-
tion estimates [35]. Apart from treating the visual localization problem in its absolute form,
which means to directly estimate the camera pose in a global or local frame of reference,
in various cases, it can be equally useful and analogous to estimate the trajectory/path
and position of the camera relative to an initial point of reference. Given the location of
this point, the problem can be transformed into either a monocular VO [36] or a monocular
SLAM [37,38], where new challenges arise, such as the estimation of the prediction scale
and its correspondence to reality, which may require additional information or processing
to be handled.
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2.2. Galileo Self-Localization

Investigations on the use of Galileo signals alone [39], or in combination with the
Global Positioning System (GPS) for navigation purposes, have been widely pursued since
the beginning of Galileo [40] and the development and availability of Galileo receivers [41].
Since 2016, GNSS receivers have been available on almost every smartphone [42]. Addition-
ally, a GNSS analysis tool accessing raw GNSS data is offered, for instance, by Google [43].
The raw GNSS data of the first smartphone enabling the reception of multi-frequency sig-
nals, namely the Xiaomi 8, were thoroughly investigated in [44] and compared to the data
from high-precision devices. The positioning of the smartphone suffers mainly from duty
cycling [45,46]. Because the phase is not continuously available, precise point positioning
(PPP) is not always possible.

The work of [47] refers to the use of GNSS positioning in rescue-relevant scenarios,
such as building assessment tasks. It is shown that, especially in difficult environments like
under trees and in close proximity to man-made infrastructure, the time to obtain a first
GNSS fix is considerably shorter when using a dedicated GNSS antenna. Furthermore, the
use of dual-band receivers and antennas improves the positioning accuracy from worse than
3 m with the current smartphones to 1.4 m and better. Another aspect for using dedicated
GNSS devices is the ability to adapt more easily to new technological improvements like
the Galileo High-Accuracy Service (HAS), which has been available since January 2023 [48].
The HAS aims to provide a PPP service worldwide. It transmits precise orbits, clocks,
and biases for both Galileo and the GPS, in the signal-in-space and through a ground
channel [49]. This in-orbit service needs neither internet nor terrestrial infrastructure for the
end user, and it provides a positioning accuracy of an order of magnitude better compared
to the 1.5 m mentioned above [50]. One problem when dealing with broadcasting tracking
information from FRs to incident commanders or to the command and control is low
bandwidth or even connection loss. The possibility of buffering localization information in
this case is investigated in [51].

2.3. Inertial Self-Localization

Being able to determine the position of people and objects reliably and accurately
in indoor spaces has been a long-standing issue, with extensive research having been
conducted in this area [52,53]. This is largely due to the wide range of applications and
scenarios for which indoor positioning systems can be utilized. Indoor tracking/navigation
approaches [54–56] are focused on the relative positioning information of a person from
a starting location in an unknown area. These approaches do not depend on an offline
survey process to be conducted beforehand and need to be able to operate in unknown en-
vironments, where an offline site survey process cannot be performed beforehand. Inertial
self-localization approaches might require operation in infrastructureless environments [57],
where there are no preinstalled devices, and to be able to obtain the principal data modal-
ities without relying on any infrastructure of a building or indoor space, utilizing the
onboard sensors of a smartphone device to obtain the positioning information of an in-
dividual. Relevant work has been conducted in [58], where the authors presented an
Android-based smartphone to perform pedestrian dead reckoning (PDR) using inertial
measurement unit (IMU) sensors, using a Kalman filter (KF) to perform the sensor fusion
and derive a location estimate. However, aspects such as acceleration and velocity are not
linear in nature [59], and, therefore, a standard KF is not appropriate as it assumes that all
the inputs and outputs are Gaussian. In more recent literature, it has been more common
to use the extended Kalman filter (EKF) and unscented Kalman filter (UKF) approaches,
which are suitable for non-linear data, such as the work conducted in [60], which also used
IMU sensors along with ultra-wide-band (UWB) technology to perform indoor position
and navigation. Moreover, Particle Filtering (PF) [61] has also been used and shown to
handle non-linear smartphone sensor data to provide high-accuracy indoor pedestrian
positioning. On another note, IMU sensors are not always necessarily located on the user’s
smartphone, as demonstrated in [62], where the authors used foot-mounted IMU sensors
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to conduct pedestrian positioning. However, these approaches require specific and more
expensive equipment to deploy. On the other hand, PDR based on smartphone IMU sensors
is a low-cost solution [56], but it presents a large challenge regarding drift PDR error [63],
which occurs due to the errors that IMU sensors exhibit and accumulate over time. This
accumulation error results in the difference between the actual location and the predicted
location to increase over time. To help mitigate this issue, refs. [64–66] demonstrated that
Received Signal Strength (RSS)-based techniques utilizing Bluetooth Low Energy (BLE)
from the mobile device communications module can be leveraged to obtain the range
estimation between itself and available landmark devices, such as a building black box.

2.4. Fusion Self-Localization

The concept of sensor fusion, in its most common form found in the literature, is
usually about combining different modalities at a low level, usually under the umbrella
of one multi-input procedure or tool. In our case, driven by the existence of the three
autonomous self-localization tools and our goal to produce a redundant, robust, and
modular system, we chose to engage with the combination of the individual modalities at
a higher level.

The combined use of inertial navigation and Galileo signals was investigated in a
project called SARHA (Sensor-Augmented Galileo Receiver for Handheld Applications in
Urban and Indoor Environments) [67], assisted by a transponder system to be installed
inside the building. The prototype demonstrates improved availability, reliability, and
position localization performance in challenging environments, serving as an initial step
toward integrating a GNSS with autonomous sensors for pedestrian navigation, although
further integration and cost reduction are needed for mass-market applications. In the
DingPos project [68], a system was introduced in which GPS and Galileo receivers were
used in an indoor localization system assisted by map matching, ultra-wide-band (UWB)
technology, and WiFi.

Currently, there are two projects funded by the European Union’s Horizon 2020
(H2020) research and innovation funding program aiming at the real-time tracking of FRs
with different localization modalities. The H2020 PROTECT [69] features a system based on
inertial sensors, called ARIANNA, specially designed for indoor tactical scenarios. Belt- or
foot-mounted IMU sensors were augmented with a compass and an altimeter. Furthermore,
indoor positioning accuracy is improved whenever floor plans are available. The H2020
INTREPID project [70] features the concept of a real-time positioning module (RPTM). The
authors highlighted the strengths and weaknesses of individual sensors such as IMU, UWB,
and SLAM based on stereo thermal cameras. The fusion of these sensors shows promise
in reducing errors, but challenges such as system initialization and data synchronization
remain. In addition to the methodologies discussed above, along with our own proposed
approach, we would like to draw attention to the work in [71]. Their work introduced an
Integrated Positioning System (IPS), which combines visual-aided inertial and standalone
inertial navigation techniques, bolstered by reference localization sources such as the GPS.
The IPS framework serves as a valuable indoor reference to validate our approach in the
subsequent results section.

Examples of modular fusion localization systems are prevalent in the intelligent
automotive domain. Moreover, the methods targeting the localization of pedestrians are
more related to a use case that involves the localization of FRs or, in general, humans in
motion. In the former domain, Wan et al. [72] estimated the optimal position, velocity,
and attitude of the vehicle. The proposed system fuses information from GNSS, LiDAR,
and IMU sensors to provide centimeter-precision localization accuracy by means of an
error-state Kalman filter. A merit of the proposed system is that it exhibits operational
resilience under challenging scenes. In a similar vein, Chen et al. [73] proposed a modular
localization system that combines GNSS, LiDAR, and IMU subsystems. Their outputs were
fused by a constraint Kalman filter. Wen et al. [74] used a fish-eye camera to capture the
boundaries of the sky view in order to correct the non-line-of-sight (NLOS) and line-of-sight
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(LOS) aspects for the GNSS receiver. Then, a probabilistic factor graph was used to combine
the data from the inertial sensor module (employing a gyroscope, a magnetometer, and an
accelerometer) that provides a heading hint and the localization data from a GNSS receiver.
Wang et al. [75] used the data obtained from a LiDAR laser scanner in order to correct
the position localization faults generated by a GNSS localization system and a subsystem
consisting of IMU sensors. Xiong et al. [76] proposed a modular localization system that
uses image data, data collected from IMU sensors, information about the motion of the
vehicle, and data from a GNSS receiver. Bresson et al. [77] followed a modular localization
approach in which a decision layer fuses the information generated by a laser scanner-based
SLAM algorithm, odometric lane tracking data extracted from color images in the RGB color
space captured by a camera, and GPS position data. As a final example, Vishal et al. [78]
made use of stored historical visual data that capture particular scenes in the environment
and introduced a data fusion strategy that incurs a feedback loop. In particular, the authors
proposed a method to harness GPS data by exploiting the image data. Moreover, they
improved the localization-provided image data by extracting the information from GPS-
based localization estimates. In terms of localization using only GPS data, the localization
is improved by means of image retrieval over previously captured historical visual data.

The localization of FRs is much closer to the application of localizing pedestrians.
This is due to the fact that the human walking motion is very likely to be close to the
walking patterns observed in the FRs operating at a scene. It should be stressed, however,
that the human motion data that an FR can generate may exhibit particular differences
compared to the case of walking pedestrians. The irregularities in the observed motion data
could be exploited by a localization method specifically targeted at FRs. Rantakokko and
collaborators [79] discussed soldier and FR cooperative localization in indoor environments.
Many studies target the localization of FRs (for instance, see [80–83]); however, very few of
them propose modular localization architectures involving the fusion of outputs by at least
two localization modules. At this point, we shall iterate the fact that FRs naturally operate
in both indoor and outdoor environments, and they can commute from indoor to outdoor
scenes and vice versa.

Now, we briefly review some modular localization systems that are targeted at pedestri-
ans. In their study, Chdid et al. [84] combined an IMU approach that uses an accelerometer
and a gyroscope sensor. The observations generated by these two sensors are fused by
means of an extended Kalman filter, which outputs a position estimate. To complement the
modularity of their system, the authors also integrated a vision-based component. This
latter subsystem generates localization estimations via a pipeline that performs structure
from the motion from the observed images. The output of both modules is averaged. This
is a low-level fusion operation. Finally, the GPS and heart rate sensor data are combined
in order to compute a more robust position estimate. Anacleto et al. [85] presented a
specialized modular architecture for pedestrian localization. The system incorporates an
inertial measurement system with sensors attached to both the foot and waist, including
accelerometers, gyroscopes, and additional sensors. GPS and heart rate sensors augment
the data to correct the inertial measurements, facilitating low-level fusion. Ultimately,
GPS data, heart rate sensor data, and processed signals are integrated into a high-level
fusion module to produce the final location estimation. Liu et al. [86] used an ultra-wide-
band-enabled sensor and introduced a SLAM-based visual processing algorithm. They
combined the data generated by both subsystems and then used an extended Kalman
filter that estimates a pedestrian’s position. By means of this architecture, the authors
tackled the scale ambiguity problem caused by monocular vision. Ali et al. [87] presented
an indoor localization method that combines inertial measurement units (in particular,
an accelerometer and a gyroscope) and an ultra-wide-band-enabled sensor. The authors
integrated the information extracted from the raw positioning data from both modules by
means of an extended Kalman filter. In their study, they also explored and analyzed the
use of an adaptive Kalman filter for position prediction. According to the authors, their
pipeline can fix position and orientation drift. In this case, the drift can be caused by the
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sensor interference and orientation dissensus originating from the inertial sensors. Chen
and Hu [88] provided in their work a rigorous mathematical modeling analysis of how
to combine inertial data and GPS location signals. The inertial measurements that they
considered are generated by an accelerometer and a sensor that captures the angular rate
of the foot. Their method is suited to outdoor localization. Huang et al. [89] introduced a
unique methodology in which they employed inertial sensor measurements, together with
Bluetooth and a light sensor, for human localization. The method proposed by the authors
has four modules, namely a “data acquisition” module, a “motion model” module, a “light
model” module, and a “decision making” module. The data acquisition component collects
the motion data from inertial sensors and the light sensor, capturing positional human
commute events. In the design of this last method, the decisionmaking module performs a
higher-level analysis of the output of the modules by means of step-length modification,
sub-edge heading reset, and pedestrian position revision.

In most of the solutions above, the different inputs for predicting the location are fused
in one algorithm, such as a SLAM or another sensor fusion approach, which inhibits the
benefits that some of the separate approaches might have under different conditions (e.g.,
GNSS solutions outdoors operate much better than indoors and, therefore, when outdoors,
it makes no sense to fuse the sensor data with IMU data). Therefore, in this paper, we try to
take advantage of separate technologies that perform differently in different environments
and fuse them at a higher level, utilizing them in the best possible way in the environment
they operate best in. This approach provides modularity and robustness to the system,
allowing all the separate tools to operate independently and retrieve the estimated location
that is more suitable for the environment in which an FR is operating in real time.

3. Methodology

In this section, we describe the overall methodology of the developed system. First,
we provide an overview of the deployment platform in which the tools are integrated,
including an overview of them, their main components, and how they interconnect. It is
followed by the extended description of the three single tools: GNSS, visual, and inertial
localization. Finally, in the last subsection, the details of the implementation of the Fusion
tool that combines the three previous modalities are explained.

3.1. System Architecture

Here, we present the general architecture of our proposed multi-modal self-localization
tools. In Figure 1, the architecture of the localization system and its integration with the
deployment platform can be seen in detail. First, it can be seen that each individual tool
has a dedicated hardware component, typically a sensor device or an integrated circuit
board, apart from software that processes the input received by the external sensors. In the
case of the Galileo-assisted self-localization, the main hardware components consist of a
small protective case enclosing a processing unit, in this case a Raspberry Pi, accompanied
by an external GNSS antenna. Accordingly, the hardware of the Visual self-localization
tool consists of a helmet-mounted camera, which streams video in order to be used for
the estimation of the movement. Finally, the hardware of the inertial self-localization
tool consists of a smartphone integrating IMU sensors acting as the primary source of
localization, as well as an auxiliary set of GNSS and BLE modules. On the contrary, the
fusion self-localization tool does not have a dedicated hardware component, and it is a
purely software tool utilizing the output of the other three self-localization tools.

In order for all our individual tools to communicate and for our proposed Fusion tool
to receive the individual predicted locations from each tool, a powerful yet lightweight
laptop was utilized that incorporates a suite of communication and orchestration between
the individual tools. More specifically, it provides a wireless local area network between the
tools and also has a Message Queuing Telemetry Transport (MQTT) broker [90] that allows
each tool to share their predicted location with the other tools, including our proposed
Fusion tool. Taking advantage of this implementation, the localization tools are able to
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retrieve information from one another, such as the visual-based and the inertial-based tools
that obtain some calibration and correction parameters from the Galileo one. Likewise, the
broker is key for the Fusion self-localization tool, which collects the localization information
from the individual tools. The tools are set to generate location estimations roughly every
0.5 s, providing latitude, longitude, altitude, and heading of the FR. Some of the tools
can provide extra information like the indoor/outdoor flag of the Galileo tool, estimation
quality metrics, and sensor placement attributes. The use of the MQTT broker makes our
solution modular, enabling any kind of visualization device to subscribe to the broker and
consume the published location in order to be displayed to the FR or to the command center.
Within this project, the FR visualization module relies on a helmet-mounted augmented
reality (AR) display able to project useful operational information. However, this is not
restricted to it, and, for instance, a mobile app or a command center terminal can also be
used while it is connected to the local network.

Inertial-based 
self-localization

MQTT
Broker

Galileo assisted 
self-localization

Visual-based 
self-localization

Fusion 
self-localization 

Camera

GNSS and
processor

IMU sensors

FR AR and 
control centre

Figure 1. System architecture. On the left, the figure shows the dedicated hardware of each localiza-
tion tool. The central part describes the intercommunication between modules through an MQTT
broker. On the right side, the endpoints of the platform consuming the data are presented.

3.2. Visual Self-Localization

In this section, the details of the implementation of Visual self-localization are pre-
sented. One important requirement of our solution was to be able to operate without, prior
to operation, having any maps, floor plans, or models of the operational area. However, we
would like our tool to be able to take advantage of such information, if it is available (i.e., a
SLAM model of the operational area/building). In that manner, we opted for a solution
based on monocular SLAM that can operate both with or without the pre-acquired model
of the area.

SLAM is an ensemble of techniques, utilized mainly in robotics, that enables a device
to map its surroundings and determine its own position simultaneously. Its aim is to help
autonomous systems navigate unknown or changing environments. Although typically
involving multiple sensors like cameras, LiDAR, and the GPS, our system focuses solely on
visual SLAM due to hardware constraints and the need for the individual sub-components
to operate independently. Monocular cameras inherently suffer from scale ambiguity,
complicating accurate scale determination. This can lead to scale drift, where minor
errors accumulate over time, affecting position estimations. However, advancements in
monocular SLAM algorithms, such as loop closure, mitigate these issues. Loop closure
recognizes previously visited locations, correcting errors and improving map consistency
by merging similar features across different parts of the environment.
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We chose to base our proposed solution on the ORB-SLAM2 [91] method. It utilizes
FAST (Features from Accelerated Segment Test) [92] detector for the visual key point
identification, which is then used by BRIEF (Binary Robust Independent Elementary Fea-
tures) [93] descriptors for representing the key points detected efficiently. The matching of
key points between consecutive frames is based on Hamming distance, enabling continuous
tracking and map building.

From a software standpoint, the Visual self-localization tool is arranged into two
modules: the outer shell and the localization core. In the flow diagram depicted in Figure 2,
the localization core’s workings correspond to the “Estimate camera pose” stage, while all
the rest correspond to the outer shell of the architecture. Internally, the localization core
assumes a local coordinate system. Thus, a transformation from the local coordinate system
to the global coordinate system must occur before formatting the output message to the
agreed-upon format and sending it via the message broker to the rest of the system. The
tool, given the appropriate configuration, can utilize either a perspective or a panoramic
camera. The connection to the camera is handled by a UDP proxy server, which constantly
reads the camera and exposes its stream to the core module via a network interface. In the
localization core of the tool lies a modified version of the Stella-VSLAM C++ library [94],
which consumes the exposed camera stream and communicates its output to the outer
Python shell via a file-based UNIX Domain Socket (UDS). The outer shell constantly
receives the camera pose expressed in local units and transforms it into a global GPS
position utilizing calibration data in a way described in the following paragraph. Then,
various derivative metrics like distance and heading are being calculated, and all the
information produced is formatted into a JavaScript Object Notation (JSON) message
before being sent to the message broker, closing the cycle.

Get initialization
parameters

Estimate camera
pose

Grab camera
stream

Configuration
parameters

Pre-calibration data 
(optional)

Connect to broker
Calibrate
(optional)

Transform
coordinates

Calculate
derivative metrics

Send message to
broker

Final position

Figure 2. Visual self-localization tool flow diagram.

The tool is able to perform localization without necessarily having traversed/scanned
the operational area before. To achieve this, it needs to run upon instantiation, a calibration
procedure to map the underlying raw SLAM model to reality. If we wish to use the tool
instantly, without conducting calibration after instantiation, it needs to have the calibration
data (the raw SLAM model and the local-to-global point correspondences) beforehand.
In either case, the procedure in which the tool can calculate this local-to-global point
transformation is hereby described:

We implemented a procedure that requires three points of known world coordinates
to calculate the required transformation. To proceed, the user has to walk through all three
points and notify the tool upon their arrival at each of them.

The world coordinate system represents latitude–longitude location points as 2D
vectors on a curvilinear coordinate system that approximately fits the spherical shape of
Earth. Let us define by P =

(
Px Py

)⊤ a point in the local 2D Cartesian coordinate system
of the underlying SLAM model. Let us also denote by Ph the height of point P. To map
point P to the corresponding point P′ in the world coordinate system, we trivially define
a homogeneous coordinate transformation formula. First, define three calibration points
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Qi =
(
Qlat

i Qlon
i

)
for i ∈ {1, 2, 3} in the world coordinate system. Also, consider the

respective Cartesian 2D calibration points in the local coordinate system of the underlying
SLAM model, namely Qci =

(
Qcx

i Qcy
i

)
for i ∈ {1, 2, 3}. For the pairs of points Qi and

Qci, respectively, we also denote their associated altitude values by the scalars Qalt
i . This

pair of location point triplets models the association between points in the two location
point vector spaces, and can help map points from the first space to the second space. To
allow for this mapping, we define the homogeneous coordinate transformation matrices L
and C; the former for the global world coordinate system and the latter for the Certesian
system of the localization tool

L =

Qlat
1 Qlat

2 Qlat
3

Qlon
1 Qlon

2 Qlon
3

1 1 1

, C =

Qcx
1 Qcx

2 Qcx
3

Qcy
1 Qcy

2 Qcy
3

1 1 1

 (1)

To map the points from the Cartesian space to the world coordinate system defined by
the three points Qi in this latter space, we define the linear operator T as T = LC−1. Then,
the projected point P′

=
(

P′
lat P′

lon
)⊤ in the world coordinate system, given the associated

point P in the local coordinate system, is provided by the matrix–vector product(
P′

lat P′
lon 1

)⊤
= T ·

(
Px Py 1

)⊤ (2)

We are also in need of approximating the altitude value α of point P′ (α should not be
confused with the symbol Ph representing the height of point P), or in equivalence of point
P. We approximate α by the formula

α =
1
3
× (Qalt

1 + Qalt
2 + Qalt

3 )− Ph × s (3)

where s is a scaling factor computed by the formula

s = D(Q1, Q2)/
√
(Qcx

1 − Qcx
2)

2 + (Qcy
1 − Qcy

2)
2

(4)

and D(·, ·) calculates the geodesic distance (computed in m) of the 2D points, Q1 and Q2,
in the 2D latitude–longitude space. The denominator in the fractional representation of the
scale factor s in Equation (4) is the Euclidean distance of the calibration points Qc1 and Qc2
in the local coordinate system.

The aforementioned calibration points can be either defined prior to the execution via
command-line arguments or be chosen on the fly, during the execution as the calibration is
being conducted, querying their world coordinates in real time by the Fusion localization
tool (functioning during that time utilizing the rest of the self-localization tools). As we
mentioned earlier, the tool has to be notified upon the arrival of the user at the chosen
calibration points. This can be accomplished either by presenting a special QR code to the
camera to be recognized or by sending the tool a configuration message from an auxiliary
Android application we developed.

3.3. Galileo Self-Localization

Our proposed Galileo-assisted Localization Tool (GLT) is a multi-band and multi-
frequency GNSS-based approach that utilizes a high-precision receiver with a dedicated
active antenna. All data processing is performed on a small single-board computer (SBC),
making the entire system self-reliant and capable of being powered by a small battery for
several hours. One of the primary focuses during the development of our GLT is tailoring
it to the needs of FRs in terms of size, weight, and robustness. To prototype the system,
we opted for one of the smallest breakout boards available, the SparkFun GNSS receiver
board, which features a U-Blox ZED-F9P receiver chip [95]. For the SBC, we selected a
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Raspberry Pi Zero 2W, chosen for its compact size and capable processor unit, allowing
it to receive and process GNSS data at 2 Hz and wirelessly transmit the data via WiFi to
the orchestrator. The GNSS receiver board is connected to the SBC via UART (Universal
Asynchronous Receiver/Transmitter). We employ a small GNSS active patch antenna
with a low-noise amplifier to receive signals from common GNSS systems such as BeiDou,
GLONASS, Galileo, and the GPS at two frequencies.

Figure 3 provides a high-level view of the GLT design architecture. A dual-frequency
GNSS refers to tracking multiple radio signals from each satellite on different frequencies.
For the GPS, this involves L1 and L5, and, for Galileo, E1 and E5a. A significant advantage
of dual-frequency transmission from a single satellite is the ability to directly measure
and eliminate ionospheric delay errors for that satellite. Additionally, receivers with dual-
frequency support can better distinguish between direct and reflected signals compared
to single-frequency receivers. In practical terms, dual-frequency capability increases the
accuracy to approximately 1 m, compared to several meters for single-band receivers.
Dedicated tests in previous research (citation removed for review) have compared the
accuracy of current dual-frequency smartphones with our proposed GLT. While the best
performance with smartphones is worse than 3 m, our GLT solution delivers on average
1.4 m or better. While such high accuracies may not be essential for most rescuer needs,
they are often crucial in challenging environments such as operations near collapsed or
intact buildings or during assessment walks in wooded areas.

Figure 3. Galileo-assisted Localization Tool High-Level Architecture.

For practicality, we have developed two physical versions of the GLT. One can be
carried inside a pocket in the personal protective equipment (PPE), while the other is
integrated into an FR’s helmet. All components, including a 2000 mAh power bank, fit
into a small box measuring 75 × 50 × 33 mm, or alternatively on the backplate of the F2XR
Gallet helmet. The active antenna should be mounted as high as possible and face the
sky, ideally positioned in the breast or arm pocket, or under the front plate of the helmet.
On the software side, the GLT integrates custom adaptations to enhance performance
and streamline data transmission. At the receiver level, modifications have been made
to achieve a higher update rate of 2 Hz, doubling the default frequency. Additionally,
enhancements have been made to improve the precision of the coordinates, resulting in an
order of magnitude increase compared to standard configurations. This adjustment enables
more frequent and precise location updates. Furthermore, the Raspberry Pi Zero 2W serves
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as the computational hub, running custom Python scripts tailored to handle incoming
NMEA (National Marine Electronics Association) and U-Blox messages from the GNSS
receiver. These scripts decode and parse the raw data, extracting essential information such
as coordinates, accuracy metrics, and heading. Leveraging the processing power of the
Pi Zero 2W, real-time calculations are performed to ensure accurate positioning data are
continuously available. The GLT starts to find a position fix after it is turned on. It sends
position data immediately after there is a fix. It should be noted that it only sends data if
the accuracy of the tool is below 10 m. We introduced this restriction because otherwise
it would send positions that are erroneous for this use case. To obtain a position fix, it
can take up to a minute. The tool should be started outdoors; otherwise, no data will
be sent because in most cases indoors it cannot obtain a position fix. If the tool is once
started outdoors, achieving a position fix again after being indoors is faster. Once processed,
the extracted information is transmitted wirelessly to the data-sharing orchestrator using
established communication protocols. This seamless integration between hardware and
software components enables efficient data flow and facilitates rapid dissemination of
critical location data to relevant intra-team members and command and control forces.

3.4. Inertial Self-Localization

Our proposed inertial-based self-localization (INERTIO) tool is a sensor fusion-based
approach that uses sensors onboard smartphones and applies a collaborative and oppor-
tunistic method to reduce drift due to the inherent noise of IMU-based sensors. The main
component of INERTIO is providing a location prediction and orientation of the FR using
the onboard IMU sensors in combination with using other modalities, such as collaborative
information from other mobile phones and opportunistic information from known locations
(e.g., landmarks, beacons, etc.).

Figure 4 provides a high-level view of INERTIO design architecture. More specifically,
it details the various sensor modules to be utilized and fused of an Android-based smart-
phone to obtain good-quality self-positioning estimates. In line with current state-of-the-art
approaches, INERTIO will use the accelerometer, gyroscope, and magnetometer of the
smartphone device’s onboard IMU sensors as the primary basis for obtaining the initial
position and orientation of the FR. Furthermore, satellite signals of the GNSS from a GLT or
the GPS from a smartphone are collected to obtain a GPS location to be used to enhance and
correct the predicted position from the IMU sensors. Also, any other additional external
data sources available (e.g., landmarks) are to be incorporated into the INERTIO position-
ing algorithm to further enhance and correct the predicted position of the FR. Lastly, the
location and trajectory information derived is outputted via WiFi to be distributed to other
mobile phones.

Figure 5 showcases how the onboard IMU sensors (on the left-hand side) and other
data modalities (on the right-hand side) available on the smartphone device are utilized by
INERTIO positioning model. The accelerometer is used to detect when the FR has moved
(i.e., taken a step), and then with these acceleration measurements to derive the stride length
of that step to provide a new initial IMU-based position. However, before accelerometer
readings are used, an extended Kalman filter (EKF) from the FSensor library is utilized to
denoise the raw acceleration measurements and thus grant enhanced stability. Regarding
orientation estimation for the initial IMU position of an FR, this is now conducted by a
Madgwick filter, which primarily uses gyroscope readings in tandem with accelerometer
and magnetometer readings to derive an orientation. Then, as before in the initial model,
this orientation information is used in conjunction with the distance traversed by the FR
from the stride estimation to advance the FR to the next estimation IMU-based position.
This IMU position can then be corrected opportunistically from additional data sources,
such as other mobile phones or landmarks with known locations. More specifically, in
INERTIO, we utilize the onboard BLE module of an FR smartphone device to provide
additional information to help correct location drift being experienced. This is achieved by
first exchanging the current positioning information (latitude, longitude, heading, drift,
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etc.) with other smartphones running INERTIO connected to the same network using
the existing MQTT service. More specifically, this ensures that every smartphone device
running INERTIO knows the current position of every other smartphone. Secondly, each
smartphone device is continuously broadcasting (at a rate of approximately one packet
per second) BLE advertising data packets containing a unique set of identifiers while
simultaneously listening for such packets broadcasted via BLE. Therefore, when two or
more FRs move into proximity of each other, these advertising packets are received in which
the BLE RSS is measured [96] and from which the approximate distance between them
can be calculated. Then, this measured distance can be compared against the predicted
distance derived using the exchanged positioning information of that FR and their own
predicted position. Lastly, the difference between the measured distance (from BLE) and the
predicted distance (from current positioning information) denotes the amount of location
correction of that FR that may need to take place. The amount of location correction to
be taken is determined by comparing their own current potential drift to the potential
drift of the device from which the BLE advertising packet originated, with a larger or
smaller correction taking place if the drift of the other FR is smaller or larger than their own,
respectively. Furthermore, in some cases, it is expected that a building is equipped with
devices that have known fixed locations, thus providing a landmark/anchor for indoor
positioning purposes [97]. In such cases, these devices that include a BLE module broadcast
BLE advertising packets similar to those used in collaborative correction in which each
packet contains a set of unique identifiers to distinguish one device from another. Again,
INERTIO is continuously listening for these BLE advertising packets, and, when received,
the distance between the smartphone and device is calculated using the RSS of the received
packet. However, as the location of these landmarks is known and does not change, it is
possible to then set the predicted location of the FR to match that of the landmark displaced
by the measured distance to help compensate for any drift that may have occurred.

Figure 4. INERTIO High-Level Architecture.
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Figure 5. INERTIO Architectural Model.

3.5. Fusion Self-Localization

The primary aim of this work is to combine the output of all three individual tools,
providing a robust and fail-safe option for self-localization based on the sensor fusion
principle. After experimenting with Kalman-type filters [98], we soon realized that such an
approach would not be appropriate for our use case. By design, Kalman filtering processes
require a priori knowledge of the expected noise statistics. This would entail conducting
generic experiments with ground truth positions to try to estimate their generated noise
distribution and obtain constant values to be used as noise. However, this approach is not
suitable for the dynamic environments where our tools operate and the nature of our tools.

More specifically, the noise characteristics of our three tools vary significantly, not
only across individual runs but also as they evolve in time through a single run. For
example, the Visual localization tool is known to produce models with sometimes varying
scale across its different sections. After calibration, this leads to a skewed model, whose
inducted noise is relative to the distortion of the current region of the model where the FR
is located. As a consequence, having reliable and generalized noise statistics is challenging.
Another behavior hindering the extraction of reliable noise statistics is the fact that INERTIO
can incorporate position corrections from different available sources in an opportunistic
way, if and when available. This means that its inaccuracy/noise is not predicable as it
depends on different modalities that might be available in different situations (e.g., GNSS
or landmark availability) where a sudden correction of its position could be performed,
altering/resetting the noise characteristics of the tool. Lastly, even the noise of the GLT can
vary between urban, suburban, and rural areas (or even between different regions of the
globe), raising the need for at least three separate noise models to correct its behavior.

Due to these reasons, a Kalman filter-based solution was considered impractical and
we turned towards a heuristically driven decision tree approach. Based on strong evidence
gained throughout experiments conducted during pilots involving real FRs, regarding the
behavior of our tools, we were able to draft a tool selection algorithm that is reasonably
expected to choose the best out of our three localization tools for any given scenario. Our
strategy is roughly to collect and retain the messages from all the available tools published
to the broker recently (being no older than two times the agreed update interval of the
tools—in our case, messages no older than one second) and then re-transmit the best of
them adhering to the following algorithm.

First, if there is a recent GLT message available, with a reliable accuracy and with the
indoor/outdoor flag suggesting that we are outdoors, the Fusion tool selects GLT since it
is the most reliable and practical in this setup. We base the detection on whether we are
indoors or outdoors on information provided by the GLT tool since the GNSS signals will
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only partly or not at all be received indoors. For indoor/outdoor detection, we investigated
different attributes of the GNSS receiver: the horizontal accuracy provided by the U-Blox
device itself, the number of visible satellites, number of satellite vehicles used for GNSS
calculation, and the signal-to-noise ratio of the respective satellites. We concluded that the
most reliable attribute to tell whether the person is indoors or outdoors is the horizontal
accuracy. It clearly shows higher values for indoor locations and low values when we are
outdoors. As a consequence, if the horizontal accuracy is below a certain threshold (for this
series of experiments, we used a threshold of 2 m), we assume that we are outdoors and
indicate this in the indoor/outdoor flag of the GLT message sent to the broker.

Second, if the GLT indicates that we are indoors and there is a recent visual localization
message available, we utilize that. Favorable behavior of the Visual self-localization tool
is that, when it loses tracking, for example, due to the bad lighting conditions or a series
of very sharp motions, and thus cannot infer position, it does not emit any messages.
Therefore, its last message will become obsolete soon enough and will play no role in
the fusion selection procedure. Finally, if there is no preferable solution available, the
algorithm resorts to using INERTIO as it always produces an output. When the Fusion
tool receives a valid message again from a modality with higher priority, it switches back
to that, continuing the operation in this iterative manner. The aforementioned strategy is
better explained visually in Figure 6.

Receive Galileo
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Is it outdoors?

Receive
INERTIO
message

Receive visual
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Is it the same as
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Send Galileo
coordinates

Wait for next
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No Yes

Yes No

Is there a recent
Galileo message?

No

Yes

Is it the same as
previous one?

Send visual
coordinates

Wait for next
message

Yes

No

Is it the same as
previous one?

Send INERTIO
coordinates

Wait for next
message

Yes

No

Is it outdoors?

Is it outdoors?

Is there a recent
visual message?

Yes

Yes

Yes

Yes

No No

No

Is there a recent
Galileo message?

No

Figure 6. Flow chart of our fusion localization algorithm. Note that, by “recent”, we refer to a message
no older than 1 s (twice the individual localization tools’ agreed update interval).

4. Results and Analysis

In the following paragraphs, we will present the results of an on-the-field experiment
where a search and rescue operation was simulated involving one FR searching for victims
in a mixed environment, including outdoor, sufficiently lit, and completely dark indoor
spaces that were traversed in a predefined route (see Figure 7 right). Five runs of the
designated route were conducted, comprising 37 waypoints (11 outdoor, 15 indoor in a
well-lit area, and 11 indoor in a dark area) on which we measured the error of the location
estimations. The waypoints are on average 2.73 m apart, giving the full route a total length
of 98.37 m. The tests were carried out at the premises of the Navacerrada Fire Station in the
administrative region of Madrid, Spain.

The tracing path begins outdoors, in the area surrounding the main facilities. In this
phase of the experiment, the Fusion tool is expected to utilize the GLT modality as its
primary source of localization. Moving to the next phase, the FR enters a small bunker
consisting of three rooms and a connecting hallway. As we move indoors, the GLT begins
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experiencing degraded signal reception and raises the “indoor” flag to the system, just
before completely halting emissions as it loses satellite fix. Being in that state, the hallway
and the far room (the first one to visit) are sufficiently lit, and, as a consequence, the visual
modality is expected to take over. As the scenario progresses further and the remaining
two rooms lack any window or artificial source of lighting, the Visual tool is expected to
lose tracking and stop emitting as well. When this happens, the Fusion algorithm resorts to
INERTIO as its only source of positioning under these harsh conditions. Gradually, the FR
returns again in the sufficiently lit hallway before coming out of the bunker, concluding
the run outdoors. The above-described routine takes on average 262.2 s to complete and
triggers six source modality transitions for the Fusion self-localization algorithm.

4.1. Ground Control Points for Evaluation

To validate our proposed fusion approach, we conducted surveys to establish ground
truth through two distinct methods. Outdoor ground control points (GCPs) were surveyed
using a real-time kinematic GNSS, achieving a mean horizontal accuracy of 1 cm. The
designated outdoor GCPs are numbered 1 to 7 and 35 to 37 and distributed near the building
used for the experiments. Indoor reference points were established based on an IPS (refer
to Section 2.4) trajectory obtained during an inspection run. In the confined bunker space,
GCPs 8 to 34 were selected to provide comprehensive indoor coverage. During the IPS
survey, each indoor GCP was carefully marked, and the IPS device was precisely positioned
at each point. The IPS utilizes inertial measurements, visual odometry techniques, and a
stereo camera system for 3D orientation and position estimation, generating a real-time
geo-referenced trajectory calibrated over outdoor GNSS-surveyed GCPs. However, it is
important to note that the accuracy of indoor reference points, estimated at approximately
30 cm per point, is lower compared to outdoor GNSS points due to the IPS’s decreasing
accuracy over time. This value is attributed to the closed-loop error of the IPS system, which
we have determined to be around 30 cm. We acknowledge that achieving higher accuracy
indoors would have been possible using tachymeter or total station survey equipment;
however, for our specific case, this level of precision was not necessary and would have
required significantly more effort. It is worth mentioning that, during the IPS survey, we
also obtained a detailed 3D model of the operational area as a beneficial byproduct (see
Figure 7 left).

Figure 7. Setup of the scenario: indoor in 3D (left) and a 2D overview (right) with the ground truth
path overlaid in dotted lines.

To capture and record the time at which user visits each GCP during each experimental
run performed, a stand-alone mobile application was developed that was used by a nearby
operator. More specifically, this application allows the operator to input the current GCP
number occupied by the user, which is then sent via the MQTT broker to the laptop carried
by the user. These messages along with the outputted data of each localization tool are then
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logged on the laptop, ensuring synchronization of timestamps and enabling data analysis
to be performed after the completion of the experiments. To ensure that each point was
reliably captured and logged, when the user visited each GCP, they would pause (i.e., stand
still) for 1 to 2 s.

4.2. Experimental Setup

An actual view of the experimental setup is provided in Figure 8. The camera of the
Visual self-localization tool, as well as the GLT antenna, are mounted on the helmet. The
smartphone for INERTIO is strapped at the leg of the FR, and it also carries the GLT device
and the laptop hosting the message broker, the Visual, and Fusion localization tools.

GoPro camera

GLT-antenna

INERTIO
smartphone

Backpack for laptop
and GLT-device

Figure 8. Hardware setup mounted on the user combining every self-localization module for
the experiment.

As regards the setup of the Visual self-localization tool, in order to save valuable time
and speed up the processes, we chose to run the tool in the pre-calibrated mode. To facilitate
this, we visited and traversed the indoor spaces of the operational area one hour prior to
the tests, storing the derived raw SLAM model for later use. Immediately afterwards, we
calibrated/mapped the raw SLAM model to reality by conducting the 3-point calibration
procedure described earlier. As calibration points, we utilized the GCPs numbered 8, 14,
and 17 along the tracing path.

The GLT was turned on and off before and after each of the 5 experimental runs. Upon
activation, the tool quickly achieved the accuracy necessary to start broadcasting. This
is facilitated by its initial exposure at a vantage point almost on top of the bunker with
clear-sky visibility.

Regarding INERTIO, it was deployed on a Google Pixel 6 Pro smartphone device that
was running Android version 13, which was securely fastened on the outside lower right
leg of the user with the use of a phone-exercise strap. The tool was calibrated with the initial
heading of the user, that is, in the direction of GCP 2 from GCP 1, and was also provided
network configurations to allow communication with MQTT broker hosted on the laptop.
Furthermore, inside each dark room, we made the assumption that there were two known
positions that could be utilized as landmarks to allow INERTIO to correct its position when
coming to a very close proximity with them (less than 0.5 m). For this, two Raspberry Pi 3B+
devices were deployed at GCPs 23 and 30 to act as BLE-based landmarks, which broadcast
BLE advertising packets at a rate of 5 Hz. The coordinates (i.e., latitude and longitude)
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along with unique identifiers of each of these landmarks were passed to INERTIO in order
for position corrections to be performed as the user comes into near proximity.

After the tools’ initialization was completed, we conducted five consecutive test runs
with small breaks in between inside a time window of about one hour.

4.3. Results

The location error at the GCPs was assessed over five test runs. Figure 9 illustrates
the distribution of the mean location error, with the error bars indicating the measurement
variance. In the upper section of the chart, insight into the source modality transitions
triggered during the traversal of the full route is provided. Table 1 provides a summary
of the location error for all the self-localization tools, taking into account only the location
estimations utilized by the Fusion tool in each run. On the other hand, Table 2 presents the
location error for the individual localization modalities, considering the partial availability
of the tools at the various GCPs. Specifically, the INERTIO tool demonstrates full availability
at all 37 GCPs, indicating consistent data availability. The visual data are predominantly
available in lit indoor areas where the SLAM model acquisition was carried out. Note
that we could set the Visual self-localization tool to also provide estimations outside of
the acquired SLAM model but deemed it unnecessary due to the given availability of
the other two localization modalities. The GLT data, on the other hand, are primarily
available outdoors. Lastly, Figure 10 showcases the individual tools’ location error values
at all the GCPs, plotted together with the Fusion tool’s actual error and the theoretically
optimal value had it chosen the correct source modality at all times. Indeed, in the frame
of our study, the Fusion self-localization tool seems to make the optimal modality choice
at 35 out of the 37 GCPs, where at all times there are at least two modalities available for
use. The two GCPs where the Fusion tool fails to pick the most accurate modality are
the transitional ones (7 and 8), right upon entering the concrete building. This indicates
a reactance on behalf of the selection mechanism to release the GLT and turn sooner to
the Visual localization tool, behavior related to the indoor/outdoor detection mechanism.
Before we delve into the analysis of the results, we should underline the fact that all the
measurements were taken at the position of an FR upon arrival at the designated ground
control points, and, as a consequence, there is some tolerance to their precise position due
to their perception and body pose, unavoidably adding some noise to the results.

Table 1. Location error for all self-localization tools. For the GLT, Visual, and INERTIO measurements,
we take into account only the location estimates that were actually used by the Fusion tool in the
respective run.

Tool Mean Error (m) Std (m) Min (m) Max (m)

GLT 1.73 0.69 0.24 3.33
Visual 0.37 0.20 0.04 0.80

INERTIO 3.37 1.92 0.18 8.73
Fusion 1.74 1.79 0.04 8.73

Table 2. Location error for the three individual self-localization modalities. For the measurements, we
take into account all the provided location estimates. Note that the INERTIO tool provided location
estimates at all the GCPs. On the other hand, the GLT provided estimates only outdoors or slightly
inside the building, while the Visual tool only indoors and right in front of the building where the
SLAM model extended to.

Tool Mean Error (m) Std (m) Min (m) Max (m) Availability

GLT 2.17 1.32 0.24 8.47 12/37
Visual 0.38 0.21 0.04 0.78 17/37

INERTIO 2.03 2.32 0.06 15.83 37/37
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Figure 9. Location error at ground control points (GCPs). Five test runs were conducted. The overlaid
error bars indicate one standard deviation around the mean values. The 37 GCPs are divided into
3 distinct sectors: 11 of them are situated outdoors, 15 indoors at a well-lit area, and 11 indoors at
a dark area. Traversing the full route should trigger six source modality transitions. On the upper
section of the chart, we can see the actual source modality used by the Fusion self-localization tool.
Note that GCPs 8 and 37 were localized by more than one modality across the runs.

Figure 10. The average location error of all tools at GCPs. Not all tools are available at every GCP. The
Fusion self-localization tool manages to make the optimal modality choice at 35 out of the 37 GCPs.
Note that at all times there are at least two modalities available for use.

Starting with the contribution of the GLT to the fused setup, the results of our test
runs reveal an average GNSS localization accuracy of 1.73 m. This slightly deviates from
our previously reported average accuracy of 1.4 m, which was derived from long outdoor
runs (citation removed for review). In the current case, the test scenario involved a shorter
run with close proximity to a building, significantly affecting the GNSS signal reception.
Particularly noteworthy is the sharp transition in accuracy upon entering and leaving
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the building, suggesting strong interference from the nearby structure. Furthermore,
the limited time available for satellite signal acquisition upon exiting the building likely
contributed to the incomplete or partially ambiguous signal reception. However, as the
test progressed beyond the immediate vicinity of the building, we observed a gradual
improvement in accuracy, with the subsequent reference points yielding accuracies of 1.9 m
and 1.8 m, respectively. These findings underscore the impact of environmental factors on
the performance of the GNSS.

Continuing with the indoor/outdoor detection provided by the GLT that lies at
the heart of our Fusion algorithm, we observed that the tool sometimes provides good
horizontal accuracy values even if the actual positioning is bad. The reason behind this
behavior seems to be that the NLOS signals are interpreted as LOS signals, indicating that
the tool suffers from multi-path effects causing some inconsistency on the indoor/outdoor
transition detection mechanism. In addition, and as mentioned above, the tool needs some
time to obtain a position fix and high accuracy after an indoor–outdoor transition. This
results in late outdoor detection and INERTIO output being used instead when coming
out of the building. Keeping in mind that the accuracy of the GLT is degraded a while
after being indoors (see also Figure 11); this “takeover” from INERTIO is reasonable and
enhances the overall fusion accuracy.

Figure 11. All self-localization tools’ outputs as visualized in the command center interface. From
top to bottom, we can see the traces produced by Fusion (yellow), GLT (blue), Visual (red), and
INERTIO (green) tools. The columns indicate the ID of the test run, from run 1 (left) to run 5 (right).
As observed, the Fusion tool trace is a composition of selected pieces from all the other tools’ traces.
Note that, in the 5th run, due to a temporary network malfunction, we lack the visualization of its
beginning, as can be noticed by the late start of the Fusion, GLT, and INERTIO traces.

When the FR approaches the entrance of the building, the Visual self-localization tool
starts picking the features of the pre-acquired SLAM model and begins emitting location
estimations. As long as the GLT emits estimations tagged with the “outdoor” flag, it is
preferred by the Fusion tool, so we need to advance further inside the building for the
Visual tool to take over, as can be seen in Figure 9. Specifically, GCP number 8 in four of
the five runs was localized with the Visual self-localization tool and in one run with the
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GLT. When well inside the building, in the lit rooms, the Visual tool appears to function at
its best, showcasing a mean error of 37 cm, notably low considering the tolerances of the
indoor GCPs’ ground truth positions and the added noise by the imprecise placement of
the user on top of them. Note that the Visual self-localization tool successfully recovered
the tracking at all times when the FR moved outside the dark rooms, enabling the correct
and swift transition of the Fusion tool to it.

The results for INERTIO showcased in Figure 9, highlighted in green, are typical of a
mobile IMU-based positioning approach, in which higher amounts of inaccuracy are being
experienced due to pedestrian dead reckoning drift taking effect. A notable amount of
IMU drift affecting INERTIO when it is first used by the Fusion tool (at the start of entering
the first dark room in GCP 20) was expected due to approximately 54.6 m of movement
being performed beforehand. At GCPs 23 and 30, we can clearly observe the user moving
in close proximity to their respective BLE landmarks and a positioning correction being
performed, with the location error in both instances dropping below 1 m. However, the
location error rapidly increases in the subsequent GCPs, further highlighting the existence
of IMU drift, more specifically, gyroscopic drift of the heading estimation, causing the user
to be advanced in a non-optimal direction. This is further evident in Figure 11, in which
we can observe the INERTIO output (green line) not moving around the two dark indoors
rooms in a smooth elliptical fashion, in line with the sequence of the GCPs. Moreover,
Figure 11 grants insights regarding how INERTIO is able to perform corrections based
upon the outputs of the other localization tools. For example, we can observe that INERTIO
is able to effectively fuse the location information outputted by the GLT for the first seven
GCPs as the locations of each tool closely follow one another, as shown by the yellow
and blue lines, respectively. This is also evident from the fact that the total mean error
of INERTIO in all the location estimations (Table 2) is smaller than the mean error when
we only consider the location estimations where INERTIO was used by the Fusion tool
(Table 1).

5. Discussion

Our study investigated the efficacy of a novel approach to localization, which lever-
ages complementary fusion techniques to improve accuracy and reliability. Building upon
the existing literature, which predominantly focuses on sensor fusion at a low level, our
approach operates at a higher level, integrating multiple localization modalities to produce
more robust results. One of the key findings of our approach is the successful imple-
mentation of complementary fusion, where multiple sources of spatial information are
utilized to improve the localization accuracy. By selecting the best option available from the
fused sources, we were able to mitigate the errors and maintain accurate localization even
under challenging conditions. Different fusion techniques that could handle a weighted
combination of the tools when more than one is available, such as Particle Filtering (PF),
may be explored in a future revision of the method. In addition to the technical aspects of
our approach, the environmental conditions emulating real-world emergency scenarios
added much to its value. Despite these adverse conditions, our localization system demon-
strated resilience, effectively mitigated errors, and maintained sufficiently accurate position
estimates, highlighting its potential utility in emergency response situations. Overall, our
study contributes to the body of knowledge on sensor fusion and localization systems by
presenting a novel approach that addresses the limitations of the existing methods and
demonstrates practical applicability in real-world scenarios.

While our study has showcased the effectiveness of our novel approach in challenging
real-world scenarios, there remain opportunities for further enhancement of the specific
components. In our experiment, we did not exploit any correction data with the GNSS
tool. Since we are using the same U-Blox device as for the outdoor GCP measurements,
we are able to achieve similar accuracy to the GCPs if non-in-orbit correction data and a
large antenna are used. However, we cannot assume receiving continuous correction data
in emergency cases, such as via LTE. The integration of in-orbit and non-in-orbit correction
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data in the GLT is foreseen for future research. Especially, the use of in-orbit correction
data is very promising but depends on the availability of the respective receiver hardware.
The future work will also include a refinement of the indoor/outdoor indicator. The
threshold, for instance, can be automatically adjusted, particularly for specific transitions
and different antennas with varying mounting positions. Additionally, we will explore how
different types of buildings affect the indicator. These adjustments will not only enhance
the performance of the GLT but also directly impact the performance of the Fusion tool.

As regards the potential improvement of the Visual self-localization method, we
believe that it should be addressed in two areas. The first would be to improve the
robustness of the tracking by utilizing some newer feature extractor. This would enable
the tool to utilize SLAM models that were acquired much earlier in time and with a much
different lighting setup than the one present at the operation time. The second would be
to minimize the scale drift that is exhibited in our monocular camera setup. To alleviate
this, our proposal is to either invest in a scale correction mechanism based on common
object detection and the prior knowledge of their true dimensions or migrate to a stereo
dual-camera setup. Lastly, we plan to conduct a new series of experiments with the non-
pre-calibrated configuration of the tool, creating and calibrating the underlying SLAM
model on the fly utilizing the Fusion tool, emulating the operational conditions where no
previous information of the area is available.

Finally, although INERTIO granted a reasonable level of performance, the observed
gyroscopic drift can impact the heading estimation, especially after the user has moved
longer distances, which is a long-standing problem in the scope of IMU-based positioning
systems. This is particularly highlighted in the results (Section 4) when traversing the
dark room sections of the performed experiments, in which the localization estimates are
solely from INERTIO and the highest amount of location error was experienced. A future
direction to help alleviate this is to consider the heading estimation outputted by the other
localization tools as a means of correction, similar to the corrections performed by INERTIO
for its position (i.e., latitude and longitude). Another enhancement towards improving the
heading drift could be by deploying and utilizing additional heading estimation models,
such as extended Kalman filter (EKF), and then performing either model selection or data
fusion to further prolong and mitigate the effect of gyroscopic drift. Finally, in cases where
multiple FRs are moving together in a search and rescue operation, in the future, we could
explore how collaborative positioning can be utilized, where multiple devices in proximity
performing IMU-based localization exchange positioning and heading information between
one another in order to correct and better compensate for their own errors.
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