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Abstract—This paper presents a novel warning system frame-
work for detecting people and vehicles in danger. The system
was tested in several images compiled from Flickr and other
social media sources and is highly suggested to get integrated in
future warning surveillance and safety systems for preventing or
solving crisis events. The proposed framework recruits State-of-
the-Art deep learning technologies so as to solve a series of image
processing and machine learning challenges and provides a near
real-time localization solution for detecting and scoring severity
safety levels of people and vehicles in flood and fire images.

Index Terms—computer vision, deep learning, image segmen-
tation, object detection

I. INTRODUCTION

Nowadays, it is well known that social media analytics play
a great role on several aspects of daily life. This technology
proved that the analysis of diverse information such as group
and individual behaviour in public and private places, market
upside-downs and customer preferences, emergency or crisis
detection in urban and rural environments, can provide mean-
ingful metadata so as to solve or optimize the solution of
current societal problems.

More specifically, image and video capturing by the use
of mobile and wearable cameras in conjunction with the
sharing culture that the internet brought in human societies
has inspired the deployment of several computer vision and
image understanding technologies which endeavour to solve
several societal problems with security and safety domains to
be one of the most serious amongst others. Millions of images
are daily uploaded on social media, while a great deal of them
might include the existence of a crisis or emergency event.
Taken this into account and inspired from the recent advance
in image understanding, we suggest a novel framework that
combines several technologies so as to detect and score the
danger that people and vehicles might be in fire and flood
scenarios. As far as we are concerned, while there might
be a lot of works that have focused either holistically (i.e.
image classification) or locally (i.e. image segmentation) on
the existence of fire and flood detection and separate with
people detection, there is none that have proposed a combined
severity level estimation scoring system as ours.

Our framework has been evaluated in benchmark fire and
flood classification and localization datasets, while we have
also crawled a great deal of emergent images from Flickr so

as to test our algorithm in a real case environment. The dataset
is a collection of Fire-Flood Flickr (3F) annotated images. The
proposed crisis management solution is very important for the
authorities since it enhances the crisis situational awareness by
using the automatic analysis of multiple files especially during
the crisis.

II. RELATED WORK

Deep Convolutional Neural Networks [1] constitute the
State-of-the-Art in image classification. After the initial in-
terest, investigation on deeper models began to take place
with [2], where smaller stacked kernels started to be in-
vestigated and advanced with Inception [3] and ResNet [4]
architectures. As far as security and safety domains are con-
cerned we can encounter flood classification in [5], [6] and
fire classification in [7], [8].

Semantic image segmentation SoA has also tend to use
deep CNNs as well [9], [10] by simply changing the objective
of the classifier and label each pixel in the image individually,
leading to a classification mask for the whole image instead of
a recognition class. As far as security and safety domains are
concerned, we scarcely find a technique that uses a deep CNN,
as there are no groundtruth available masks and the training of
these models is infeasible. A worth-to-note technique which
performs fire detection in social images with the use of color
and texture attributes was presented in [11].

Object detection has numerous applications: autonomous
vehicles, smart video surveillance, facial detection, ambient
assisted living, etc. Naturally, deep CNN architectures were
thoroughly examined for this. Early works such as [12] include
multi scale bounding box proposal generation techniques like
Selective Search [13], as a feeding mechanism of candidate
boxes to deep classifiers. The trend later became to incorporate
this function into single shot object detectors, using end-to-end
deep architectures [14], [15], [16]. Those models achieved
a better trade-off between accuracy and speed. In a previous
work of ours [17] we have proposed a novel scheme to detect
vehicles and pedestrians from traffic surveillance cameras. The
same framework has also been deployed in UA-DETRAC
vehicle detection dataset [18], achieving a really high detection
rate.

978-1-5386-0951-4/18/$31.00 ©2018 IEEE



Fig. 1: Overall diagram of our unified framework

III. METHODOLOGY

To begin with the analysis of our unified framework, we
need to clarify that our work mainly focuses on the detection
of people and vehicles that undergo danger in fire and flood
scenarios in social media images and other visual sources.
For that purposes, we gathered a great deal of visual content
and deployed the following set of computer vision techniques:
a) Image classification so as to determine whether an image
contains an emergent event or not; b) Emergency localization
in order to detect the regions where fire and flood pixels exist
in flood and fire pictures; c) Object detection so as to find
people and vehicles that exist in the image and d) Severity
level estimation to define the danger that the people and
vehicles undergo based on their proximity to the emergent
event. The overall diagram is depicted in Figure 1.

A. Emergency classification

The Emergency Classification (EmC) component is based
on State-of-the-Art image classification techniques and is used
so as to determine which images contain an emergency event.
Inspired from the recent success that deep learning showed
in image understanding [2] and scene recognition [19], we
chose to fine-tune the pre-trained parameters of the V GG−16
on Places365 dataset so as to leverage useful distinctions
between various visual clues that relate to generic scenery
images. A set of amendments were performed on its archi-
tecture so as to fit it to our purposes: Initially we removed the
final Fully Connected (FC) layer and replaced it with a new FC
layer with a width of 3 freezing the weights up to the previous
layer and finally we deployed a softmax classifier so as to
enable multi-class recognition. More specifically the EmC
results into three-class image recognition: ”Fire”, ”Flood” and
”Other”, where ”Other” may represent any theme except for
fire and flood events, e.g. scenes of interior, forests, snowy
mountains, crowded streets, urban life etc.

The EmC results are integrated in the framework to indicate
the existence of fire and flood events in a holistic manner and
the component’s purpose is to give an early indication and
a first segment of solid information about the existence of

an emergency in the image. This information, taken from an
initial observation of the whole image, is rather useful to be
integrated into the severity level analysis as shown later.

B. Emergency localization

Simultaneously with EmC, we deploy an Emergency Lo-
calization (EmL) component, which is responsible to seman-
tically segment the regions where fire and flood pixels exist in
case EmC’s result indicates an emergency situation. Inspired
from the recent success that semantic image segmentation
achieved in [20], we chose to adopt DeepLab and an archi-
tecture of ”atrous convolution”, which uses convolution with
up-sampled filters, so as to solve the emergency localization
problem in images. We chose DeepLab because ”atrous con-
volution” allows a wider reception field of the convolution
filters, leading to richer context representations, while it also
combines the result feature vectors of the final convolutional
layer with a fully connected Conditional Random Field (CRF)
which provides refined segmentation masks as it includes
neighboring context on its calculations.

C. Object detection

The Object Detector (ObD) component is responsible to
provide a set of bounding boxes of the persons and vehicles in
social media images, as well as their immediate surroundings.
Groups of people or individuals are detected as persons, while
vehicles may contain one of the following categories: cars,
trucks, buses, bicycles and motorcycles. The basis of our ob-
ject detection component is inspired from Faster R-CNN [14],
pretrained on COCO dataset [21], with some alterations so
as to make it fit to our emergency event purposes. More
specifically, based on [22], we chose to deploy ResNet101
feature extractor so as to extract deep features and then use an
Region of Interest (RoI) pooling scheme to classify candidate
boxes. Unfortunately, as far as we are concerned, there is no
fire/flood emergency image dataset to depict people or vehicles
in immediate danger to train our detector, so we opt to train
our model only in COCO and keep only the object classes that
we are interested in.

D. Severity level estimation

Our unified framework is completed with the severity level
estimation component which combines EmC, EmL and ObD
results so as to define a severity level label for each in-danger
bounding box of the gathered social images: (a) ’Safe target’,
(b) ’Target possibly in danger’, (c) ’Target in danger’, which
can also be interpreted as a qualitative risk assessment scale
of three levels: ’Low’, ’Medium’, or ’High’ respectively.

The possible outcomes of the system logic are described
here:

• Low risk for an emergency event we have when the
EmC classifies the candidate image as ’other’. All the
detected bounding boxes from the ObjD are declared
’Safe targets’.

• Medium risk we have when an image is classified as
emergency from the EmC component (i.e. fire/flood).



All targets that are detected from ObD are automatically
characterized as ’Possibly in danger’.

• Elevation to high risk we have when a bounding box
detected by ObD coincides with EmL emergency masks
(i.e. fire/flood).

IV. EXPERIMENTAL WORK

To evaluate each component of our framework, we made
several experiments on benchmark fire and flood datasets. For
Emergency Classification (EmC) we use the MediaEval’s Dis-
aster Image Retrieval from Social Media (DIRSM) dataset [6],
while for Emergency Localization (EmL) we use the BowFire
dataset [11]. As far as severity level estimation is concerned,
we didn’t find an available dataset for emergency situations
on the literature, thus we decided to create our own one with
images from Flickr and other social media sources, annotate
it and named it as Fire-Flood Flickr (3F) emergency dataset.

A. 3F-emergency dataset

Due to the lack of emergency dataset for severity level
estimation, we contribute to the literature the 3F-emergency
dataset, which is a collection of social media images for fire
and flood emergency scenarios. For compilation purposes, we
also used annotated images of flood [6] and fire [11] events, in
addition to our retrieved and annotated fire and flood images
from Flickr.

More specifically, the expanded 3F-emergency dataset is
enriched with DIRSM [6] flood images, BowFire [11] and
UIA-CAIR [23] fire images. Our initial 3F-emergency dataset
is composed of 6K images from Flickr and in the expanded
version another 6K images are added. The goal of this com-
pilation is to create a large enough dataset so as to train the
CNN models as more accurate as it can be. For collecting
visual content from Flickr, we used Flickr API [24] which
lets users search the database with text or tag queries and
returns image IDs. We retrieved only images accompanied
with a Creative Commons compatible license, while the search
queries we used were: ’flood’, ’flooded street’, ’fire’, ’burning
vehicle’, ’fire accident’, ’flood emergency’, ’fire explosion’,
’wildfire’, etc. We also used queries such as ’busy street’,
’forests’, ’mountains’, ’sunrise’, ’beach’, etc to get images for
the ’Other’ class.

While all the above pictures accompanied with a class label,
only BowFire are complemented with groundtruth masks that
can be used for Emergency Localization purposes. Unfortu-
nately, BowFire dataset contain pictures only for fire events,
so we led to the temporary solution to use VideoWaterDB [25]
which contain different video shots from water scenarios, so
as to simulate a flood scenario event. Another unfortunate fact
in our localization experiments is that that the groundtruth
masks that BowFire provides contains only fire pixels, no
matter if flood or large water bodies exists as well, which
usually happen in real case scenarios (i.e. a fire-fighter in a
flooded city extinguishing a fire that burns a building). That
led us to the unfortunate position to remove these images from
the emergency localization training, as they would erroneously

reduce the accuracy rates when pixels were determined as
background and not as flood. Additionally, we added some
of the ’Other’ type images from the 3F-Dataset to use as
background instances. Their ground truth mask was easily
created by tagging all the pixels as background. Free-copyright
results on 3F-Dataset are provided in [26].

B. System evaluation

For system evaluation purposes, we provide quantitative
results for image classification and image segmentation and
qualitative results for severity level estimation. Our models
were trained in generic datasets and fine-tuned in emergency
related ones so as to have a better representation and general-
ization system.

Image classification evaluation took place in MediaEval’s
Disaster image retrieval from social media (DIRSM) dataset,
where flood and other type of images were provided. A 10
fold cross validation was followed to evaluate Emergency
Classification (EmC) component. Recognition accuracy results
and comparison with State-of-the-Art are provided in Table I,
where we can see that EmC outperforms all image classifica-
tion methods that were presented in MediaEval’s Multimedia
Satelite Task 2017, scoring 1.77% higher from the second
rival.

A separate classification evaluation was also took place
on our 3F-emergency dataset, where from a total of 12423
images, 2485 were selected randomly (20%) as a test set
and the remaining were used to train EmC model. Here,
the classes were 3: ’fire’, ’flood’ and ’other’, while there
were some examples where some of the two coincide and
the discrimination was quite difficult to tell. Nevertheless, our
framework achieved a mean accuracy recognition rate that
reached the 87.32%, with 83.7% ’other’ class achieving the
lowest score, fire the highest with 93.3% and 88.96% for flood.

Image localization evaluation took place on BowFire [11]
and VideoWaterDB [25] datasets for fire and flood segmen-
tation respectively. Comparisons regarding the fire segmen-
tation results took place on BowFire by computing recall
and precision metrics and are depicted in Table II. As far
as recall is concerned, we can observe that our results are
really close to [35] and tied for second place with [36]
outperforming the rest, meaning that we found a great deal of
pixels that were groundtruthed as fire. On the other hand, as
far as precision is concerned, we didn’t achieve as well as we
expected, as there were a great deal of background pixels that
misclassified as fire, leading to lower precision rates than other
SoA techniques. These false alarms however, can be alleviated
in our warning framework, as the use of EmC component can
eliminate a great deal of images that do not contain a threat,
which can eventually increase the precision rate on the final
severity level estimation.

Image localization evaluation has also been performed on
the whole collected dataset (i.e. flood, fire, other) and preci-
sion, recall and IoU results are aggregated in Table III. It is
noteworthy that we achieved very good precision and recall
scores for ’flood’ and ’other’ classes as they are much more



TABLE I: Image classification results on DIRSM Dataset and comparison with SoA
Authors Ours [27] [6] [28] [29] [30] [31] [5]

Accuracy 97.50% 87.88% 92.27% 95.11% 70.16% 87.87% 95.73% 95.71%

TABLE II: Fire localization results on BowFire Dataset and
comparison with SoA

Authors Precision Recall F1-score
Celik [32] 52% 68% 53%
Rossi [33] < 40% 20%− 30% < 30%
Rudz [34] 63% < 50% 50%− 60%
Chino [11] 50% 60%− 70% 50%− 60%
Chen [35] 37% 84% 45%

Avalhais [36] 62% 77% 63%
Zhang [37] 50% 31% 29%

Ours 39% 77% 52%

TABLE III: Localization results on our custom Dataset
Metric Backgr Flood Fire

Precision 97% 92% 39%
Recall 94% 92% 77%

IoU 92% 85% 35%
MeanIoU 71%

rigid than ’fire’ and much harder to be accurately found. IoU
score for each class is calculated dividing TP instances by the
sum of TP, FP, and FN instances, leading eventually into a
decent meanIoU 71.0% segmentation accuracy.

Fig. 2: Qualitative results of people and vehicles in danger

Severity level estimation in this work is evaluated with
qualitative results and a set of successful and failure images
are provide in Figure 2. We ask the reader to follow our github
repository [26] to download extra outcomes of our framework.

We visualize the severity level of danger in the resulting
candidate target bounding boxes from the ObD component by
using a three color palette to draw them: (a) Green for ’Safe’
targets, (b) yellow for ’Possibly in danger’ targets, and (c)
red for targets classified as being ’in danger’. A second color

pallet is used to draw the embossed regions that result from
EmL component and are colored as red for fire and blue for
flood regions.

Analysing the qualitative results in Figure 2, we can see
that our framework can work very well in very demanding
situations such as the top-left picture, where a person fired up
can be easily isolated from the background environment which
is quite irrelevant with the emergent event. A successfully
captured flood event is depicted in the bottom left picture,
where we can see the people who are in the water obtain an
’in danger’ label contrary to the one who is in the car and far
from the flood and is labelled as ’possibly in danger’.

Analysing now the failure cases, we can see that in some
cases we might have a good EmL mask, but fail to recognise
the picture as emergent using EmC, giving an erroneous ’safe’
label, like the car which is on fire on the top-right picture.
However, examining a plethora of testing samples it can be
confirmed that this failure rarely appears ( [26]). Other, more
frequent cases of failure are showcased in the bottom right
picture, where a series of flooded cars is depicted. As we can
see there might be some cases where the ObD may not find
all the targets or the EmL mask is not so well formed, leading
to missing or erroneous labels. This was very usual in flood
scenarios, where the water covers a great deal of the object or
the object occludes the water, leading to bad bounding boxes
and segmentation masks, contrary to fire events where the fire
usually occludes the target and not vice versa.

Overall, on the most of the test samples that were examined,
rarely a target in danger did not get at least a ’Medium’ level
tag. The most cases of inconsistency and confusion happened
frequently between ’Medium’ and ’High’ level tags, because
EmL did not work so well in flood cases, which is mainly
attributed to the lack of groundtruth masks to train the model.
Flood detection worked very well in the provided dataset but
it undoubtedly needs much more data to generalize it in more
emergent situations.

V. CONCLUSION

We conclude that our work could contribute greatly to crisis
management procedures during and after such events and
can be integrated in crisis management and decision support
systems. Furthermore, we hope that with this work we will
manage to arouse interest towards the creation of larger scale
datasets that will be used to analyse emergency situations.

ACKNOWLEDGMENT

This work was supported by beAWARE [38] and
EOPEN [39] project partially funded by the European Com-
mission under grant agreement No 700475 and 776019.



REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.
[Online]. Available: http://arxiv.org/abs/1409.1556

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, A. Rabinovich et al., “Going deeper with convolutions.”
Cvpr, 2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[5] B. Bischke, P. Bhardwaj, A. Gautam, P. Helber, D. Borth, and A. Dengel,
“Detection of flooding events in social multimedia and satellite imagery
using deep neural networks,” in Working Notes Proc. MediaEval Work-
shop, 2017, p. 2.

[6] K. Avgerinakis, A. Moumtzidou, S. Andreadis, E. Michail, I. Gialam-
poukidis, S. Vrochidis, and I. Kompatsiaris, “Visual and textual analysis
of social media and satellite images for flood detection@ multimedia
satellite task mediaeval 2017,” in Multimedia satellite task MediaEval
2017, 2017.

[7] K. Muhammad, J. Ahmad, and S. W. Baik, “Early fire detection using
convolutional neural networks during surveillance for effective disaster
management,” Neurocomputing, 2017.

[8] J. Sharma, O.-C. Granmo, M. Goodwin, and J. T. Fidje, “Deep convo-
lutional neural networks for fire detection in images,” in International
Conference on Engineering Applications of Neural Networks. Springer,
2017, pp. 183–193.

[9] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[10] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[11] D. Y. Chino, L. P. Avalhais, J. F. Rodrigues, and A. J. Traina, “Bowfire:
detection of fire in still images by integrating pixel color and texture
analysis,” in Graphics, Patterns and Images (SIBGRAPI), 2015 28th
SIBGRAPI Conference on. IEEE, 2015, pp. 95–102.

[12] R. Girshick, “Fast r-cnn,” arXiv preprint arXiv:1504.08083, 2015.
[13] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders,

“Selective search for object recognition,” International journal of com-
puter vision, vol. 104, no. 2, pp. 154–171, 2013.

[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[15] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[16] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[17] K. Avgerinakis, P. Giannakeris, A. Briassouli, A. Karakostas,
S. Vrochidis, and I. Kompatsiaris, “Intelligent traffic city management
from surveillance systems (certh-iti),” in IEEE Smart World 2017,
NVIDIA AI city challenge, 2017.

[18] L. Wen, D. Du, Z. Cai, Z. Lei, M. Chang, H. Qi, J. Lim, M. Yang, and
S. Lyu, “DETRAC: A new benchmark and protocol for multi-object
tracking,” CoRR, vol. abs/1511.04136, 2015. [Online]. Available:
http://arxiv.org/abs/1511.04136

[19] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning
deep features for scene recognition using places database,” in Advances
in neural information processing systems, 2014, pp. 487–495.

[20] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs,” CoRR, vol.
abs/1606.00915, 2016. [Online]. Available: http://arxiv.org/abs/1606.
00915

[21] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in

context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[22] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama et al., “Speed/accuracy trade-offs for
modern convolutional object detectors,” in IEEE CVPR, 2017.

[23] UIA-CAIR, “Fire-Detection-Image-Dataset,” https://github.com/cair/
Fire-Detection-Image-Dataset.

[24] Flickr, “Flickr API,” https://www.flickr.com/services/api/.
[25] P. Mettes, R. T. Tan, and R. C. Veltkamp, “Water detection through

spatio-temporal invariant descriptors,” Computer Vision and Image Un-
derstanding, vol. 154, pp. 182–191, 2017.

[26] “PVD Framework github page,” https://github.com/ppgiannak/
pvd-framework.
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