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Abstract. In what has arguably been one of the most troubling periods
of recent medical history, with a global pandemic emphasising the impor-
tance of staying healthy, innovative tools that shelter patient well-being
gain momentum. In that view, we propose a framework that leverages
multimodal data, namely inertial and depth sensor-originating data, is
integrated in a health care oriented platform, and tackles the crucial is-
sue of detecting patient actions, such as walking, standing and jogging,
or even patient falls. To analyse person movement and consequently as-
sess the patient’s condition, an efficient methodology is presented that
is two-fold: initially a sophisticated Kinect-based methodology is pre-
sented that exploits 3DHOG depth features and the descriptive power
of a Fisher encoding scheme. This is complemented by wearable sensor
data analysis using time domain features and a robust fusion strategy
that provides an effective and reliable recognition methodology. The clas-
sification accuracy reported in a well-known benchmark dataset proves
that the presented approach achieves competitive results and validates
the applicability and efficiency of our human action recognition (HAR)
methodology.

Keywords: Action recognition · Sensor fusion · Depth sensors · Wear-
able sensors.

1 Introduction

Considering the biological and psychological challenges that contemporary, ur-
ban mainly, settings pose for many people who are used to leading fast-paced but
sedentary lives, it becomes apparent that maintaining a healthy lifestyle com-
prising mental and physical activities, as well as adequate rest is of paramount
importance. Attaining the correct balance of activities is a task that greatly
benefits from the latest advances in technologies such as pervasive sensors, arti-
ficial intelligence, human and health monitoring and assistive living. Particularly
in unconventional circumstances, such as the present Covid-19 era, that people
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need to apply socially distancing criteria in all of their activities, often having
to cope with the unavailability of experts, physical activity self-assessment via
sensor-based methods is crucial.

Specifically in the field of medicine, data analysis coming from small, low
cost, high performance sensors has been providing researchers the tools to de-
velop efficient and versatile methods of assisting patients, in order to improve
their lifestyle. People in need of monitoring tend to be more autonomous and
less attached to their caretakers, when having access to personalised activity
information. Knowing that reliable mechanisms, such as automatic push noti-
fications in case of patient fall, are in place to ensure timely intervention, it
provides obvious benefits to both their physical state, and mental state and
sense of self-sufficiency. Passive patient monitoring is an incontrovertible area
of application of the abovementioned systems, where patients with mental dis-
eases like dementia can be supervised to avoid or prevent potentially hazardous
circumstances.

In the present work, focus is placed on monitoring certain well-defined actions
/ human movements, usually pertaining to a rehabilitation scenario, by fusing
inertial and depth sensor data, since the technique has proven to provide excel-
lent results, while the required training data are easily obtainable. Corresponding
analysis results will be integrated into a unified multiuser-oriented platform, ser-
vicing both patients and caretakers (to avoid voiding the blind review, citation
to be added upon paper acceptance). The contribution of the paper is two-fold,
since it entails multimodal data analysis for action classification, coupled with a
sophisticated fusion methodology. Specifically, we applied several classification
algorithms on inertial and visual sensors separately in order to recognise 27 hu-
man actions of the UTD-MHAD public dataset [5]. Two different fusion methods
were also utilised to combine the acquired information of heterogeneous sensors.
The contribution of the paper could be summarised in the following:

– Efficient algorithms are presented for human action recognition based on
inertial and depth sensors.

– Combination of depth and inertial sensors with two types of fusion (feature-
level and decision-level) and their impact in performance is assessed.

– Extensive experimental evaluation is performed using numerous classifiers
and evaluation protocols on a well-known multimodal benchmark dataset.

2 Related Work

Human action analysis and detection in the context of Ambient Assisted Liv-
ing (AAL) is facilitated by a variety of sensors, which may include inertial,
range and magnetic sensors, depth and RGB cameras and even atypical modal-
ity type sensors, such as electrocardiogram ones [21]. The multitude of existing
sensor technologies is supplemented by respective analysis methodologies. Di-
verse studies elaborate on modern machine learning HAR approaches [31], such
as the one found in [23] that focuses on deep learning, transfer learning, and
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active learning state-of-the-art techniques. Moreover, in [10] distinct neural net-
works are exploited for depth and inertial sensing before decision-level fusion is
performed. However, to leverage the performance improvement of deep learning,
large amounts of training data and computational resources are often required.

A common denominator when talking about inertial sensing, is the use of
accelerometers and gyroscopes, and depending on the field of application [9, 1],
they may be complemented by more specialised sensors, such as magnetometers
or barometric altimeters. Applications and trends favourable to inertial sens-
ing are illustrated in [2], which also includes details on the history of devices
and predictions on future directions. An in-depth view of the most important
features and technologies, coupled with significant drawbacks (focuses on the
consequences of force and charge transduction methods, and mechanical system
dynamics) governing typical gyroscope and accelerometer outputs is provided in
[25].

Kinect revolutionised the field by providing an easily accessible and affordable
tool, capable of skeleton, depth and RGB data provision. Since its introduction in
the consumer market, researchers wholeheartedly embraced it and exploited its
capabilities to present novel methods of tackling HAR [8], [30], [20], [18]. Despite
the justified attention it gathered and the promising results that the respective
approaches delivered, concerns were expressed regarding privacy issues (due to
the RGB sensor), installation/setup complexity and computational efficiency
[17]. As a consequence, many studies focus primarily on depth and skeleton
information, with approaches that leverage RGB data being under-developed.

The importance and glaring popularity that the action recognition task has
enjoyed has led to the existence of dedicated challenges [27, 24] and varying
datasets [22, 5, 15] that have been created to promote it. Various methodolo-
gies have been tried and been evaluated, mostly focusing on individual depth
camera or inertial sensor performance. Since certain real life challenges are im-
possible to be tackled just by one modality, approaches that combine the two
have also been tested with promising results and helped overcome certain oth-
erwise insurmountable issues [32, 11, 4]. Three main fusion directions exist that
apply to most HAR approaches and each is performed at a different workflow
step. The first is called data-level fusion, the second feature-level fusion, and the
third decision-level fusion. Data-level fusion corresponds to the concatenation
of raw data as they are directly collected from the respective sensors. Feature-
level fusion (early fusion) is performed after features have been extracted from
raw data and entails fusion of retrieved feature sets. Lastly, decision-level fusion
(late fusion) combines the results of individual sensors after the classification
has been completed. Works that relate to various aspects of action recognition
[6] via depth/skeleton and inertial sensor data fusion are being detailed next.

Depending on the problem, different fusion mechanisms and theories have
been attempted, such as exploitation of Hidden Markov Models (HMM) for hand
gesture recognition [19] to tackle different modality synchronisation issues or the
Dempster-Shafer theory for late (decision-level) fusion for action recognition in
[3]. The former methodology [19] reported individual recognition sensing accu-
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racy of 84% (Kinect) and 88% (inertial), while the concatenated model achieved
accuracy of 93%. In the latter [3], early (feature-level) fusion is achieved by
merging each sensor’s individually extracted feature sets (first represented as
vectors and then normalised) before the classification process is activated. Re-
ported scores varied between 2-23% compared to the individual ones. Similar
improvements are exhibited in [33] when the authors combine ear-worn sensors
and RGB-D (Red, Green, Blue and Depth) to perform walking analysis. More-
over, an ensemble of binary one-vs-all neural network classifiers is explored in
[12] to improve indoor human action recognition robustness, which once trained,
is able to be effortlessly embedded on portable devices. Furthermore, a task
that benefits greatly (2-8% improvement) from sensor data fusion is identified in
[16], which describes an approach that leverages an SVM classifier and combines
depth maps with accelerometer data to perform fall detection.

3 Methodology

3.1 Inertial Sensors

One wearable inertial sensor was used to record human actions in UTD-MHAD
dataset [5], which we use in this work. The sensor provided recordings of ac-
celeration, angular velocity and magnetic strength. To perform the analysis on
the inertial sensor signals, we utilised the feature set suggested in [13], a paper
that conducts experiments on the same dataset. Firstly we calculated the mag-
nitude of the raw signals of accelerometers and gyroscopes, using the formula in
Eq. 1, where a stands for the signal values of each axis. For the preprocessing
stage, the authors in [13] proposed a moving window average for each 3 rows
of data. Following, three features were extracted from the filtered signal vectors
of each axis and of the calculated magnitude. More specifically, in accordance
with [13], we calculated the mean of each vector (Eq. 2), the average of the
absolute first difference of each signal vector a (Eq. 3), as well as the average
of the corresponding second difference of the signal vectors a (Eq. 4). Analy-
sis was performed on accelerometer and gyroscope signals, as well as on their
concatenated features.

amag =
√
a2x + a2y + a2z (1)

mean =
1

N

∑
a(n) (2)

meanfd =
1

N

∑
|a(n)− a(n− 1)| (3)

meansd =
1

N

∑
|a(n+ 1)− 2a(n) + a(n− 1)| (4)
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3.2 Depth Sensors

Local Features In order to extract features from depth videos, we leverage
the well-established efficiency of the HOG descriptor (Histograms of Oriented
Gradients). We apply the process on 3D volumes so as to capture spatio-temporal
features that encode the actor’s body shape and limp movements that happen
when an action is performed. The 3DHOG descriptors are calculated based
on the gradient magnitude responses in horizontal and vertical directions of a
given set of frames. Next, the responses are aggregated over spatio-temporal
blocks of pixels. A histogram of gradient responses quantised into 8 bins (8
orientations) is constructed for each block and the responses of all pixels in
that block are assigned linearly into neighboring bins. Finally, the histograms
of a neighborhood of blocks are concatenated together to form a local 3DHOG
descriptor. Our method is different in that aspect from the approach of [28] or
[13], and does not result in 3D chunks of perfectly neighboring blocks. Instead,
in order to maximise efficiency and speed up the calculations, we apply strided
sampling which skips a fixed number of pixels before taking the next block. We
chose to construct blocks with a size of 15x15 pixels and 20 frames as in [13]. The
3D chunks are created with the concatenation of 3x3 blocks in space and 2 blocks
in time, and the stride parameter is set to 5 pixels on all directions. Therefore,
each chunk is compiled by 18 histograms (3x3x2 blocks), resulting in a 144-
dimensional 3DHOG descriptor. Finally, the local 3DHOGs are L1-normalised
and reduced to half their size (70 components) using PCA.

Action Representation The local 3DHOG descriptor’s dimensionality de-
pends on the choices for the spatial and temporal dimensions of the concate-
nation chunks and is fixed in a given setting (144 reduced to 70 after PCA).
However, the number of local 3DHOG descriptors extracted in a sequence can
be arbitrary and is determined by the duration of each video, which is not the
same for every sequence in the dataset. Thus, we ought to apply a method that
will allow us to aggregate the set of collected local 3DHOGs to a final fixed size
meaningful representation for each sequence.

In order to build the final descriptors, we apply a Fisher encoding scheme,
which is proven to be a more efficient and powerful method to synthesise action
representations compared to other bag-of-words techniques [29, 28, 7]. First, a
visual vocabulary based on the most prominent visual clues of the whole depth
sequence is built. The computation of the most discriminating samples is per-
formed by applying unsupervised clustering (Gaussian Mixture Model (GMM))
in the shallow representation hyperspace, as formed by the feature collection of
each depth sequence.

Let {µj , Σj , πj ; j ∈ RL} be the set of parameters for L Gaussian models,
with µj , Σj and πj standing respectively for the mean, the covariance and the
prior probability weights of the jth Gaussian. Assuming that the D-dimensional
3DHOG descriptor is represented as xi ∈ RD; i = {1, . . . , N}, with N denoting
the total number of descriptors, Fisher encoding is then built upon the first and
second order statistics:
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f1j =
1
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√
πj
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i=1

qijσ
−1
j (xi − µj)
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1
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√

2πj
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qij [
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2
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j

− 1]

(5)

where qij is the Gaussian soft assignment of descriptor xi to the jth Gaussian
and is given by:

qij =
exp[− 1

2 (xi − µj)
TΣ−1

j (xi − µj)]∑L
t=1 exp[−

1
2 (xi − µt)TΣ

−1
j (xi − µt)]

(6)

Distances, as calculated by Eq. 5, are next concatenated to form the resulting
Fisher vector, FX = [f11, f21, . . . , f1L, f2L]. Finally, L2 and power normalisation
is applied to all Fisher vectors.

3.3 Sensor Fusion

For the fusion of depth and inertial sensors, both early and late fusion schemes
were deployed. Accelerometer and gyroscope features were combined with the
features extracted from the depth videos. In order to combine the heterogeneous
sources at feature level (early fusion), the sensor data were first L2-normalised
and then concatenated with the Fisher vectors. To perform late fusion, we com-
bined the probability vectors of the predicted classes by averaging: using the
same classifier, the probabilities obtained from inertial and depth modalities
were averaged and the class with the highest averaged probability was assigned
to each test case. The amount of actions included in the dataset would not favour
other forms of late fusion, like weighted late fusion, that compute weights based
on the classification metrics of each class.

4 Experiments and Results

4.1 Dataset and Evaluation Description

The evaluation of our methods was performed on a well-known public multi-
modal dataset for action recognition, UTD-MHAD [5]. This dataset provides
captured data for 27 different types of actions, carried out by 8 subjects (4 fe-
male, 4 male), performing 1 to 4 trials for each action. The set contains in total
861 samples. Please refer to [5] for a detailed description and the full class list.
This is a challenging dataset because it contains a high number of classes with
substantial variability. Specifically, only about 30 samples correspond to each
class on average.

In our effort to comply with all the evaluation scenarios that have been pre-
viously proposed for this dataset, we conduct our experiments based on three
different evaluation protocols: a) subject-generic protocol, where each subject
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was used once as a test set. b) The subject-specific protocol, where each subject
was examined separately. For each subject, two of the trials constitute the train-
ing set and the other two trials form the test set. c) The cross-subject protocol,
where the models are trained on half of the subjects (1, 3, 5, 7) and tested on
the other half (2, 4, 6, 8). The respective results refer to the average values of all
rounds of experiments. The classification algorithms evaluated in this work are:
Linear Discriminant Analysis (LDA), k-Nearest Neighbours with 1 neighbour
(k-NN), Naive Bayes (NB), Random Forests (RF), linear and quadratic Support
Vector Machines.

4.2 Inertial Sensor Performance Analysis

The recordings of the wearable inertial sensor were tested for their performance
together and separately. As seen in Table 1, which presents the accuracy levels
of all experiments of the three evaluation scenarios, we cannot draw conclusions
on which scheme performs best, as it seems that this varies depending on the
classifier. In case of the subject specific evaluation scenario, the combination of
accelerometer and gyroscope performs better. This is not the case though in the
other two evaluation scenarios, where there are classifiers that produce better
results using the readings of the one sensor only. Such observations are usually
reported in relevant studies, where there is always present heterogeneity caused
by different subjects, different sampling frequencies or even different placement of
sensors. Another reason would be the number of actions recorded in the current
dataset. Regarding the performance of the classification algorithms, LDA and RF
produced the best accuracy levels. The experiments reproduced from the baseline
paper [13] did not yield the same results, probably because of a misconception
in the description of the evaluation or feature extraction steps.

Table 1: Inertial sensor performance.
Sbj Generic Sbj Specific Cross Sbj

Acc+Gyro Acc Gyro Acc+Gyro Acc Gyro Acc+Gyro Acc Gyro

LDA 0.7875 0.6654 0.6597 0.8066 0.8063 0.8907 0.7860 0.6093 0.6372
kNN 0.4767 0.5150 0.4763 0.8068 0.8764 0.8067 0.4370 0.5000 0.4372
NB 0.5970 0.4990 0.5064 0.5270 0.4243 0.3849 0.5860 0.4744 0.5233
RF 0.6934 0.5690 0.5924 0.9139 0.8138 0.8282 0.6560 0.5279 0.5674
Linear SVM 0.6180 0.4690 0.6029 0.8022 0.8463 0.8023 0.5740 0.4605 0.5744
Kernel SVM 0.3181 0.4189 0.3366 0.6020 0.7928 0.5990 0.3465 0.4512 0.3511

4.3 Depth Sensor Performance Analysis

Specifically for the depth sensor methodology, it was first imperative to infer the
optimal value for the number of Gaussians of the GMM clustering procedure.
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That is, the number of visual words of the vocabulary. To this end, we conducted
an initial experiment performing 8-fold cross validation on the entire dataset
using random splits, with various values for the size of the codebook: 4, 8, 16, 32
and 64 words. Table 2 shows the results. Nearly all the classifiers achieve their
peak performance with 32 GMM words, therefore we hypothesise that the sweat
spot is roughly around this value and we use it in all further experiments. Table 3
shows the performance of the depth sensor for every classifier for every evaluation
protocol. It can be seen that in general, LDA, Random Forests and Linear SVM
perform consistently better than the others in all the tests. Moreover, our method
seems to perform better in the subject specific protocol, where there are no
unseen subjects in the test set.

Table 2: 8-fold cross validation with various GMM vocabulary sizes.
GMM vocabulary

4 words 8 words 16 words 32 words 64 words

LDA 0.886 0.959 0.973 0.979 0.962
kNN 0.926 0.957 0.968 0.980 0.979
NB 0.792 0.828 0.853 0.851 0.838
RF 0.921 0.938 0.956 0.965 0.954
Linear SVM 0.902 0.956 0.976 0.990 0.986
Kernel SVM 0.011 0.008 0.008 0.015 0.005

Table 3: Depth sensor performance.
Sbj Generic Sbj Specific Cross Subject

LDA 0.856 0.860 0.781
kNN 0.572 0.993 0.458
NB 0.796 0.670 0.681
RF 0.826 0.984 0.809
Linear SVM 0.779 0.998 0.747
Kernel SVM 0.502 0.970 0.433

4.4 Sensor Fusion Performance Analysis

In this section we present the results of the combination of depth and inertial
sensors. Accelerometers and gyroscopes were combined with the depth sensors.
Figure 1 shows a comparison of the two fusion approaches with the individual
modalities for each one of the three evaluation protocols. As we can see in most
cases the early fusion scheme outperforms, or is equal, compared to both the
inertial and depth modalities and the late fusion scheme. This conclusion holds
true for the majority of the classifiers in all tests. Moreover, there are cases where
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late fusion performs worse than either one of the two sensors. In general, we can
safely conclude that our early fusion technique is the best choice irrespective of
the classifier used.

(a) Subject Generic (b) Subject Specific

(c) Cross Subject evaluation

Fig. 1: Performance comparison of individual modalities with early and late fu-
sion approaches.

4.5 Comparison With State-of-the-Art

Table 4 shows a detailed comparison with the state-of-the-art works in the same
dataset. Our method’s results are taken from the best performing classifier on
the corresponding evaluation protocol and for each one of the inertial, depth and
early fusion modalities. For other works, we present the reported results on the
appropriate field depending on what protocols have been followed. As we can see,
our method outperforms all other works on the subject specific and 8-fold cross
validation protocols. Regarding the subject generic evaluation, our early fusion
technique is surpassed by the decision-level fusion of [4], although the individ-
ual modalities in our methodology perform better. This indicates that a more
sophisticated fusion technique is possibly needed to maximize the capabilities
of our methodology. Regarding the cross subject evaluation, which is the most
popular protocol, our fusion technique is surpassed by the deep learning-based
fusion of [11], but our depth modality scores higher. Still, our method’s early
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fusion scheme achieves competitive results without the data augmentation step
of [11] which is needed to train deep CNNs.

Table 4: Comparison with the state-of-the-art. I=Inertial, D=Depth,
I+D=Fusion of inertial and depth.

Evaluation protocol

Work Modality Sbj Generic Sbj Specific Cross Sbj 8-fold cv

I 0.661
Chen et al., 2015 [5] D 0.672

I+D 0.791

Elmadany et al., 2015 [14] D 0.734

I 0.764 0.883
Chen et al., 2015 [4] D 0.747 0.851

I+D 0.915 0.972

Zhang et al., 2017 [34] D 0.844

I 0.916
Ehatisham et al., 2019 [13] D 0.815

I+D 0.970

I 0.815
Dawar et al., 2019 [11] D 0.759

I+D 0.892

Weiyao et al., 2019 [32] D 0.887

Sidor et al., 2020 [26] D 0.886 0.993

I 0.787 0.913 0.786 0.904
Ours D 0.856 0.998 0.809 0.990

I+D 0.873 0.998 0.853 0.997

5 Conclusions and Future Work

In this work we have presented an efficient methodology for human action recog-
nition, based on inertial and depth data and their fusion. We have compared the
early and late fusion schemes for an array of classifiers and confirmed the su-
periority of early fusion. Our method yields competitive results to other works
without the need for deep learning or elaborate fusion schemes. However, we
intend to explore these alternatives in our future work so as to push towards
more accurate action classification.
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