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Abstract

This paper proposes a novel binary image descriptor,

namely the Adaptive Hierarchical Density Histogram, that

can be utilized for complex binary image retrieval. This

novel descriptor exploits the distribution of the image points

on a two-dimensional area. To reflect effectively this distri-

bution, we propose an adaptive pyramidal decomposition

of the image into non-overlapping rectangular regions and

the extraction of the density histogram of each region. This

hierarchical decomposition algorithm is based on the re-

cursive calculation of geometric centroids. The presented

technique is experimentally shown to combine efficient per-

formance, low computational cost and scalability. Compar-

ison with other prevailing approaches demonstrates its high

potential.

1 Introduction

Despite the significant advances in colour image

processing, still many image databases consist of binary

(i.e. black-and-white) images, including trademarks, patent

images, technical drawings, or other specific applications

like road signs, botanical collections or medical images.

Binary images contain minimum colour and texture infor-

mation, so they cannot be effectively described by general

purpose content based algorithms, which highly depend on

the aforementioned characteristics. So, while the employ-

ment of descriptors such as the known Scale Invariant Fea-

ture Transform (SIFT) [13] in binary image databases could

be possible, their usage is rather limited. Instead, content-

based binary image analysis techniques are expected to in-

clude a shape-based feature vector extraction method [2]–

[4], [7]–[8], i.e. one that aim to describe the image geomet-

ric information accurately. A generic case content-based

binary image retrieval scheme has to deal with the unique

characteristics of binary images. More specifically, such

images (e.g. technical drawings, patent images, etc) origi-

nate from a noisy analog sketch of various drawing styles

that was exposed to arbitrary time degradation, as well as to

the content degrading procedure of digitising.

In the image processing domain, several shape-based bi-

nary image processing techniques have been proposed. In

[7]–[8], a known approach for binary images content-based

retrieval is presented, that recognises line-patterns, in or-

der to produce attributed graphs or the histogram of lo-

cal attributes. In [10]-[11], the binary image is consid-

ered as a set of line segments. The lengths and orienta-

tions of triples of adjacent line segments are quantised into

pre-defined codewords and the resulting histogram is used

as binary image descriptor. Variations of the method has

been proposed for object detection [11], shape retrieval and

classification [10]. In a recent work [12], the combination

of local and global features is proposed in order to cap-

ture both the essence and details of a binary shape. In an-

other approach, a two-step algorithm is proposed to retrieve

relevant images from a binary trademark database [2]–[3],

which included the computation and quantisation of im-

age edge angles, thus constructing the Edge Direction His-

togram [3] (EDH). This descriptor was combined with Hu’s

invariant moments [1] and template matching in a sophisti-

cated and computationally expensive scheme that cannot be

easily generalised. Recently, a large number of built-upon

EDH features have been proposed. The most prominent is

the edge orientation autocorrelogram, (EOAC) [5], which

has been introduced for general purpose CBIR. Edge ori-

entation autocorrelogram is a two dimensional histogram,

in which the (j, k) element indicates the number of similar

edges with the j − th orientation that lie k pixel distance

apart. EOAC and edge-based techniques in general, inher-

ently fail to achieve independence from drawing style. This

is because the edge directions can not be accurately com-

puted in cases of very thin or very thick line drawings, small

isolated blobs drawings and filled-in figures [3]. Neverthe-

less, the edge orientation autocorrelogram (EOAC) has been

compared with many shape-based retrieval features and re-

vealed the scheme’s superiority [5].

This paper introduces a novel retrieval technique for bi-

nary image retrieval, based on a new feature called the
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Adaptive Hierarchical Density Histogram (AHDH). The ap-

proach is inspired by the adaptive pyramidal decomposition

of the image into regions based on the recursive calculation

of geometric centroids proposed in [5] in order to produce

an efficient binary image descriptor by generating the den-

sity histogram of each region. As the technique is based

on the geometric characteristics of the image by exploiting

the distribution of the image points on a two-dimensional

area, it shows robustness against drawing style variation and

moderate additional noise. In addition, taking into account

the small feature vector size and the fact that no segmenta-

tion process is required, the algorithm is proven to be com-

putationally inexpensive and consequently it is capable of

dealing with large binary image databases.

The rest of the paper is structured as follows: In section

2 the algorithm for the adaptive pyramidical decomposition

of an image [6] is summarised. The algorithm for the gen-

eration of the Adaptive Hierarchical Density Histogram is

presented and analysed in section 3. In section 4 a set of

experiments in a patent image database is conducted, which

include comparisons that demonstrate the improved perfor-

mance of the proposed method over the well-established

methods of EOAC [5] and [6]. Finally, section 5 concludes

this work.

2 Adaptive Hierarchical Geometrical Cen-

troids Partitioning

In [6] Yang et al. have presented an adaptive pyramidal

image partitioning scheme in order to generate an image

descriptor that was composed of the calculated geometric

centroids. In an iterative process, the initial image is de-

composed into non-overlapping regions in a recursive way.

In this algorithm region partitioning is performed based on

the extraction of the geometric centroids. In each iteration

(or level of decomposition) l, a number of 4l−1 regions Rl
i

have to be processed. Considering a separate cartesian co-

ordinates system for each region Rl
i, the coordinates of the

respective geometrical centroid cR = (xc, xc) is given by

[6]:

xc =

∑
(x,y)∈Bl

i

x

N l
i

, yc =

∑
(x,y)∈Bl

i

y

N l
i

(1)

where N l
i denotes the amount of black-pixels set Bl

i in

the processed regionRl
i, and the illuminance of a binary im-

age pixel with coordinates (x, y), can take only values 0 (for
pixel that belong to the background, or ‘white’ pixels) or 1
(for pixel that belong to the foreground, or ‘black’ pixels).

These centroids partition the image plane in an adaptive hi-

erarchical biased orthogonal grid (figure 1).

Figure 1. A binary patent image and its first
and second level centroids (marked with
dots) and partitions.

3 Adaptive Hierarchical Density Histogram

(AHDH)

In this section a novel feature, namely the Adaptive Hi-

erarchical Density Histogram, is introduced. The algorithm

for the generation of AHDH consists of two main parts:

a) the Region Partitioning based on the generation of the

adaptive geometric centroids as discussed in previous sec-

tion and b) the Adaptive Hierarchical Density Histogram

generation, which is the main contribution of this work. A

schematic view of the algorithm is presented in figure 2.

In contrary to the most shape-based techniques, in which

a binary image is considered as a complex geometrical

shape or a set of simple geometrical primitives, the ori-

entations and relative positions of which would produce a

fair description of its topological structure, in our approach

the binary image is considered as a two dimensional plane.

We define as B the set of black pixels that comprise the

schematic diagram on the plane, while N is the cardinal-

ity of the elements of B. The coordinates of these pixels

are normalised in order to be translation invariant and in

addition a simple noise reduction procedure is performed

during a pre-processing stage. Regions are produced iter-

atively following the technique that was introduced in [6]

and summarised in section 2, leading to the construction of

an adaptive asymmetric orthogonal grid, which covers the

entire black and white image (figure 1).

For each iteration or level l, Region Partitioning is per-

formed by estimating the geometric centroid of all regions

Rl
i formulated so far and then splitting each region into 4

sub-regions SRl
i,j , j = {1, 2, 3, 4} using as center the geo-

metric centroid. The initial region is the whole image and if
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Figure 2. Overview of the presented algorithm. Initially translation invariance and noise reduction
is achieved through a simple pre-processing step. Subsequently, the binary image is segmented
into smaller regions with the iterative procedure of Region Partioning. Then, the novel feature is

extracted in the Feature Vector Generation part, which is the main contribution of this work. This
iterative procedure is terminated when a manually selected criterion is satisfied.

l > 1 then for all regions Rl
i there is a sub-region SRl−1

i1,j1

such that Rl
i ≡ SRl−1

i1,j1
.This iterative procedure is contin-

ued until a termination criterion is satisfied.

The procedure of feature extraction depends on the level

value; in ‘lower’ levels, the feature is simply a vector of the

distribution of the N l
i black pixels into the 4 sub-regions,

while in ‘higher’ levels a two-classes classification of each

sub-region is employed. The two classes are labeled as

‘Full’ and ‘Empty’ and are defined by the percentage of

N l
i black pixels that lie into the sub-region in comparison

to the percentage of region’s area El
i that belong to the sub-

region. The combination of the classes of all 4 sub-regions

of a region produces a ‘distribution word’. Finally, the ‘dis-

tribution word’ histogram is used as the levels feature. As

the region partitioning step generates an adaptive hierarchi-

cal orthogonal partition and the feature extraction involves

the estimation of each region’s density the proposed gener-

ated feature is named ‘Adaptive Hierarchical Density His-

togram’.

3.1 Adaptive Hierarchical Density His-
togram Generation

The most important part of the algorithm is the gener-

ation of the novel feature AHDH. We consider two differ-

ent approaches for the construction of the feature vector: a)

density features and b) quantised relative density features.

For all levels l less than a threshold ld density features are

estimated, while if l ≥ ld quantised relative density features

are computed. Threshold ld is experimentally defined. The

features are estimated accordingly, for all regions at each

level and the overall feature vector is updated at each itera-

tion of the algorithm.

Yang et al. proposed a feature vector wich consists of

the centroids of the three first iterations [6]. The number

of the centroids is an exponentially increasing function of

the amount of levels, and in order to keep the dimensional-

ity of the feature vector low, the centroids can be estimated

only for the first levels. This undermines the potential of the

approach, since most of the image local geometrical infor-

mation lies in the deepest levels. Furthermore, it seems that

the distribution of region’s black pixels conveys more infor-

mation than the geometric centroid. For instance, in figure 1

the fact that in the second level partition the ‘first line, sec-

ond column’ sub-region is almost empty of black pixels is

usually much more useful than the exact knowledge of the

centroid of the region that this sub-region belongs. Con-

sequently, we propose the employment of a density vector,

instead of Yang’s centroid vector.

In l − th level (i.e. after l iterations), we have identified
4l−1 regions Rl

i with area El
i and N l

i black pixels. For each

of these regions, the centroid estimation results to a parti-

tion into 4 new sub-regions SRl
i,j , j = {1, 2, 3, 4}with area

El
i,j and N l

i,j black pixels. It is obvious that
4∑

j=1

N l
i,j = N l

i

and
4∑

j=1

El
i,j = El

i . Two variables are defined based on

these: the density dl
i,j of a sub-region SRl

i,j of a region Rl
i

and the relative density d̂l
i,j . The density dl

i,j is defined as



the amount of the black pixels of a sub-region SRl
i,j divided

by N l
i , while the relative density d̂l

i,j is the sub-region den-

sity compared to the ratio of the sub-region area El
i,j over

the region area El
i:

dl
i,j =

N l
i,j

N l
i

, d̂l
i,j =

El
iN

l
i,j

N l
iE

l
i,j

(2)

where 1 ≤ i ≤ 4l−1 and 1 ≤ j ≤ 4. Subsequently an

4l−1× 4 feature array FAl is constructed either by the den-

sities or the relative densities of each new sub-region.

FAl =

∣∣∣∣∣∣∣∣
dl
1,1 dl

1,2 dl
1,3 dl

1,4

dl
2,1 dl

2,2 dl
2,3 dl

2,4

.... .... .... ....
dl
4l−1,1 dl

4l−1,2 dl
4l−1,3 dl

4l−1,4

∣∣∣∣∣∣∣∣ (3)

Then, the FAl is serialised to form the l-level feature

FVl:

FVl =
{

dl
1,1, d

l
1,2, d

l
1,3, d

l
1,4, .., d

l
4l−1,3, d

l
4l−1,4

}
(4)

In the same way, we construct the feature F̂ V l, which

involves d̂l
i,j instead of dl

i,j :

F̂ V l =
{

d̂l
1,1, d̂

l
1,2, d̂

l
1,3, d̂

l
1,4, .., d̂

l
4l−1,3, d̂

l
4l−1,4

}
(5)

The employment of density or relative density features

depends on the partition level. For lower levels, the den-

sity vector is used. The feature of these levels is simply

the serialised density feature of Equation (4). The dimen-

sion of the density feature increases exponentially with the

number of levels. On the other hand, as the higher level

triggers an image decomposition in exponentially smaller

parts, the information that each feature element contains is

rapidly decreasing. To overcome those inherent deficien-

cies, the relative density feature is employed in the higher

levels (Equation (5)). Hence, when the number of iteration,

exceeds an experimentally evaluated threshold, then relative

density instead of density is computed in the algorithm.

3.2 Relative Density Vector Quantisation

Unlike to centroid vectors, density and relative density

vectors can easily be quantised. In this work we have cho-

sen to quantise only the relative density, and not the density,

vectors due to the intuitionally straightforward extraction

of the between-classes boundary that they provide. A sub-

region SRl
i,j , for which d̂l

i,j ≥ 1, is labeled ‘Full’, else it is

labelled ‘Empty’. The rationale behind the use of the Empty

and Full labels can be statistically explained. If the black

pixels of a region Rl
i would fall in the four sub-regions fol-

lowing a uniform random distribution, the expected value

of relative density would be equal to 1 for every sub-region.

Consequently, a sub-region is labeled Full or Empty de-

pending on the amount of pixels that lie in its interior com-

pared to the statistically expected value. On the contrary,

density vectors quantisation depend on the selection of an

arbitrate between-classes threshold.

At this stage, we introduce a Lexicon L of ‘distribution

words’ w, which represents the 16 combinations of the 4

Full or Empty sub-regions of a processed region. Defining

that E corresponds to Empty and F to Full, the lexicon L
has the following format:

L = [EEEE,EEEF, ..., FFFF ] = [w0, w1, ..., w15]
(6)

However, the valid words that are used are actually 15.

The 16-th, non valid word is the ‘EEEE’ orw0, since, by the

definition of the relative density the amount of black pixels

of a sub-region can not be less than the expected value for

all four sub-regions of any region. Based on this lexicon,

the quantised feature for each level is:

F̂ V q,l = [h(w1)l, h(w2)l, ..., h(w15)l] (7)

where h(wi)l is estimated by counting the number of ap-

pearances of the respective word, normalised over the to-

tal number of the level l sub-regions (i.e h(w1)5 is the his-

togram value of the word EEEF in the 5− th level).

Finally, the new constructed feature is superimposed to

the feature vector that was generated during the previous

iterations:

FV = [FV1 FV2 ...FVld−1 F̂ V q,ld F̂ V q,ld+1 ...FVq,l]
where ld is the first level for which quantised relative den-

sity features are extracted. After the algorithm is termi-

nated, the final format of FV represents the Adaptive Hi-

erarchical Density Histogram of the image and can be used

for retrieval purposes.

It must be mentioned that relative density vectors are em-

ployed and quantised only to allow us to reach deepest lev-

els, where local information about the black pixels topolog-

ical structure exists. In the first levels, this technique, is not

only unnecessary but also inefficient, since it is obvious that

the global distribution of black pixels is much better repre-

sented by the density vector instead of the knowledge that

its relative density vector belongs to a certain class.

4 Experimental Results

In this section the experimental results for the evalu-

ation of the proposed algorithm are presented. The po-

tential of the proposed technique is demonstrated through

comparison with: (i) the edge orientation autocorrelogram



(EOAC), which is considered one of the most prevalent

approach in this domain, outperforming most of the non-

segmentation based retrieval methods [5], and (ii) Yang’s

technique, which was the basis for our approach, utilising

a 3-level centroid vector [6]. The experiments were con-

ducted in a database of complex binary images, extracted

from patent documents from European Patent Office.

More specifically, in the experimental framework we

employed a database1 that includes 2000 binary patent im-

ages. The query base was created by 120 randomly selected

binary patent images with 2 to 73 relevant images in the

database. The annotation of the database was performed

with the cooperation of patent searchers in the context of

the EU project PATExpert. The AHDH method employed a

constant termination level, which was experimentally tuned

to l = 10. The first level for which quantised relative den-

sity features are extracted were manually set to ld = 3.
EOAC and centroid vector algorithms were executed with

the parameters that [5] and [9] have applied. In all methods,

L1 distance was utilised as a similarity measure.

The Precision-Recall curves are illustrated in figure 3.

It can be observed that for identical Recall rates, AHDH

Precision rate is at least 20-40% higher than the other im-

plemented techniques, while for identical Precision rates,

Recall rate is 5-25% better. In the case that Recall and Pre-

cision values are equal, AHDH would lead to a mutual en-

hancement of at least 14.7% both for Recall and Precision

values. The above comparison indicates the improved per-

formance of AHDH over these prevalent binary image de-

scriptors. In order to test the aforementioned techniques in

terms of time response and scalability, we employed a data-

base of 10000 images, also extracted from patent documents

from European Patent Office. The mean time-responses of

the system for a queries by visual example using AHDH,

Yang’s and EOAC technique were 9.1, 8.5 and 90 seconds

respectively.

Additionally, a query-based experiment, in which each

image example of the first database (i.e. 2000 patent im-

ages) was associated with the 25 most similar images re-

trieved for each query, was conducted. This is the case

in many retrieval systems, where a user is assumed to de-

cide about the number of the results to be retrieved. Images

with more than 25 similar images where excluded from the

query database, leading to a query base of 96 images at to-

tal. For this experiment, 86.9% of the manually annotated

near-replicas or similar images were successfully retrieved.

Two different query images and the first retrieved images,

which involve visual search for technical drawings of circu-

lar shape and flowcharts respectively are shown in figure 4.

On the other hand, figure 5 depicts a retrieval example, in

which the algorithm fails to produce quality results. In this

case, the example patent image, which illustrates an item

1Publicly available at http://mklab.iti.gr/content/patent-database
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Figure 3. Precision - Recall diagram of AHDH,
EOAC and centroid vector for patent binary
images.

rotated by different angles and the results contain only one

similar depiction and cyclic objects. This is due to the fact

that the proposed method is rotation variant and fails to re-

trieve similar images under different orientations.

From the aforementioned experimental results, it can be

seen that Adaptive Hierarchical Density Histograms out-

performs EOAC in terms of precision, recall and time re-

sponse. Furthermore, the proposed descriptor is equivalent

with Geometrical Adaptive Hierarchical Centroids in terms

of computational complexity, however it demonstrates sig-

nificantly better recall and precision rates.

It should be mentioned that, similarly to most shape

descriptors including Edge Orientation Autocorrelogram,

Adaptive Hierarchical Density Histogram is experimentally

found to be rotation variant for high rotation angles. How-

ever, the small feature vector size and the relatively low

computational cost that is required to extract the descrip-

tor can allow a simple countermeasure by creating multiple

feature vectors for variant image orientations.

5 Conclusions and Future Work

In this paper the novel feature namely Adaptive Hierar-

chical Density Histograms for binary image retrieval was

introduced. Evaluation of the performance of the algorithm

in terms of recall and precision as well as of time response

and comparison with other important techniques in the field,

showed the potential of the proposed retrieval method. On

the other hand, the major drawback of the AHDH is the

absence of inherent geometrical invariance, which can be

considered as the main restraining factor of its performance.

Future work will deal with further research that would pro-



Figure 4. Two queries by visual example of
patent images and the first retrieved results.

Figure 5. A patent image example that fails to
produce quality results.

vide a geometrical invariant variation of the point-density

histogram.
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