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Abstract—A novel work for Ambient Assisted Living appli-
cations is presented here. More specifically, this paper focuses
on activity recognition from recordings of daily living captured
by wearable cameras. It constructs a discriminant object centric
motion descriptor for representing the micro-actions within the
viewpoint of the action maker so as to later define the activity
that he/she performs. The accumulation of these activities build
patterns over time that can be used to study the behavior
of the end-users, which is very useful for health application
and monitoring of patients inside their own dwellings or their
behavior inside a controlled environment.

Index Terms—Activity recognition, Object detection, Egocen-
tric vision, Ambient assisted living.

I. INTRODUCTION

Nowadays, more and more patients that do not have a
critical disease are called to live inside their own homes, as
nursing homes and hospitals can not accommodate them in
their own premises for too long. However, for some of them
it is essential that a doctor or a carer should continue monitor
their health and keep a log file of their behaviors throughout
time. This work is motivated by this need and proposes an
unobtrusive and efficient way to gather visual data of human
patients activities of daily living, so that it could build their
behavioral pattern throughout time and alleviate the workload
of their carers and doctors. Except from that, our system keep
a log file of the objects that a human patient uses and their
position inside a house, so that they could be informed about
anytime they want.

Activity recognition of daily living is a very hot topic
amongst the computer vision domain and a lot of works have
been proposed in the last decade to solve this challenge.
Many of them propose to describe activities by an object
centric manner following the information that derives from
the existence of specific objects in the scene [6], [15], [13],
[21]. Moreover, scene understanding is also used in [17]. Other
works leverage the motion that appears in the scene and extract
features so as to represent the activities that take place [11],
[12]. In [20] a multi-task clustering framework tailored to first-
person view (FPV) activity recognition is presented. Another
more recent approach is to use deep CNN architectures [19]
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to learn deep appearance and motion clues. Deep CNNs are
also used to learn hand segmentations in order to understand
the activities that a user performs and his interaction with
other users that might also appear in the video frame [21],
[2], [1]. More recent works focus on multi-modal analysis
of egocentric cameras and information from other wearable
sensor equipment with the deployment of early or late fusion
schemes [14], [4], [3].

In contrast with the aforementioned methods we not only
detect relevant objects but also extract their individual motion
patterns and group them by class over short temporal win-
dows. Subsequently, we encode those patterns in a binning
framework to understand their usage in short term actions
which are fundamental building blocks of long term activities.
In addition, unlike other State-of-the-Art (SoA) works, our
current implementation does not rely on any hand movement
information at all or other sensor equipment. Results in a
benchmark dataset shows the capability of the proposed work
by profoundly evaluating in a great deal of parameters and
comparing it with SoA work.

The rest of this paper is organized as follows. In section II,
methodology is presented, while in section III the experimental
results are included. Finally, conclusions are drawn in Section
IV.

II. METHODOLOGY

In order to successfully recognize activities of daily living
such as ”book reading”, ”hand washing” or ”preparing break-
fast” that take place inside an egocentric video, it is important
at first to get a deep understanding of the short time lower
level actions a person is performing sequentially in order to
accomplish the bigger scale ones. For example the activity
”preparing breakfast” involves the short time actions ”opening
the fridge”, ”grabbing butter”, ”closing the fridge”, ”taking a
knife”, ”spreading the butter” etc. This group of micro-actions
as we call them, does not always need to form a complicated
sequence for every activity. For example the activity ”reading
a book” besides the actual reading usually involves only one
micro-action performed repeatedly: ”turning the page”. For
those reasons we seek a way of extracting a representation of
the full duration of an activity video that will be informative
towards the set of micro-actions that are included and have a
strong ability to uniquely describe the activity.
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Fig. 1. Block diagram of the proposed methodology.

It is also very well established [6] [15] [13] [21] that every
activity is related closely to a group of active objects and
a group of passive objects. The first group contains objects
that are handled by the person during the activity and the
second group contains objects that are simply within view of
the camera when the activity is performed. Objects are good
indicators of certain activities such as the TV in the ”watching
television” activity or the book in the ”reading a book” activity.
We further elaborate this notion by hypothesizing that not
only the presence but also the characteristic motion of the
objects that is taking place in the scene is powerful enough
to discriminate between active and passive ones and at the
same time inform about the activities that are happening. For
example motion information from dishes that are being washed
combined with the presence of a tap in the scene can uniquely
describe the ”washing dishes” activity.

The above assumptions are taken into account in our ac-
tivity recognition method. The overall framework is shown in
figure 1. First we detect objects using a deep CNN architecture
that combines deep feature extraction network and a bounding
box coordinate regression network that predicts object classes
and locations in the video frames. We combine the powerful
detector with a tracking algorithm eliminating the need to
utilize the deep architecture for every frame in order to achieve
near real time object detection. Then, every detected object’s
motion is analyzed using HOF or MBH [5] features so as to
form the lower level micro-action representations that appear
in short time windows over the full activity sequence. Finally
GMM clustering of the micro-action descriptors is performed
in order to find the most discriminative of the full set. Given
a set of micro-action descriptors extracted for a single activity
sequence and the GMM clustering centers, a Fisher encoding
scheme is used in order to yield the final descriptor of
the full activity sequence in a Bag-of-Micro-Actions type of
representation.

A. Object Detection

For the purpose of detecting objects of interest in video
frames we chose to extract deep image representations from a
CNN and predict pixel coordinates of bounding boxes using a
deep CNN object detector. To this end we adopt a modification
of the accurate Faster-RCNN that was originally proposed
in [16]. A thorough evaluation of this model and comparisons
with other SoA deep object detectors presented in [9] reveal
that the Faster-RCNN-resnet101 architecture achieves a good
trade off between speed/accuracy. This model incorporates the
resnet101 [7] deep feature extractor and a region proposal
network along with a bounding box classifier and coordinate
regressors. We chose this architecture because it achieves
very fast object detection by using a single feed-forward
convolutional network to directly predict classes and bounding
boxes of objects. In order to speed up our object detection
procedure during inference time we find useful to track the
detected objects found in a frame into the next T frames of the
video. By assigning a detection rate of T > 15 our combined
detector and tracker algorithm achieves real time performance.
We manually set the detection rate parameter to 15 following
empirical evaluation after trials with other values ranging from
15 to 30. Intuitively, the detection rate defines the temporal
resolution of the continuous object detection function. Lower
detection rate means higher temporal resolution of the detector
and vise versa. Note that by setting the detection rate to 15 the
detector only runs once between half-second intervals and the
tracker works the rest of the time which yields an adequate
temporal resolution considering that it is very unlikely that an
object will appear and disappear in less than that time.

The core functionality of our tracker is based on the KCF
tracking algorithm that was proposed in [8]. The detector
is used initially in order to detect objects every T video
frames and initialize the new object candidate database with
new entries. Bounding box coordinates are stored over time
so that full trajectories can be build. For every new ID its



corresponding class label and a detection score is saved as
well. Afterwards, the algorithm checks the new detections
from the candidate pool for overlaps with already existing
recent trajectories. Then, based on an IoU score check it rejects
found boxes that exceed an overlap threshold to avoid creating
multiple identities for the same object. Next, we feed the KCF
tracker with the remaining boxes in order to localize their
position throughout sequential video frames. Future detections
of already tracked objects are also utilized in order to rectify
the bounding boxes of the monitored objects. When a detection
is missed, we relocalize the bounding box relying only on
KCF update coordinates, while when the algorithm does not
localize any tracked object for l sequential video frames the
object is presumed to have traveled off the frame. To tackle
overlaps between True Positive (TP) cases we chose to merge
the trajectories at the current frame and assign the oldest ID
to the resulting trajectory.

B. Micro-action representation

In Figure 2 we can see how our proposed object motion
descriptors are computed. Our method builds representations
of short term low level actions of fixed temporal window W
from the motion patterns of the objects that are found in this
window. More specifically, we compute dense optical flow
to extract the full scene’s motion between two consecutive
frames. We use the OpenCV implementation of the Fast
optical flow using the dense inverse search algorithm proposed
in [10]. In addition, doing the calculation every other frame
inside the window instead of every frame leads to W/2
calculations which yields faster computation times. Having
already detected the objects in a particular frame we take
each bounding box as our region of interest and crop the
dense optical flow map accordingly taking only the portion
that belongs to the object. Consequently we can calculate
HOF (histograms of optical flow) descriptors that represent
an object’s motion.

To calculate an object’s HOF descriptor we apply a 2X2
uniform grid on top of the bounding box region. For each
one of the 4 cells flow orientations are quantized into an 8
bin histogram weighted by their magnitude values. In addition
we chose to apply a soft binning method that distributes the
votes between adjacent bins based on the distances of the
values from adjacent bins centers. This procedure results in a
32-Dimensional motion descriptor that is extracted for every
object class in the scene. If multiple objects from the same
class appear in a frame we chose to aggregate the vectors and
divide by the number of objects so as to get the average motion
descriptor of that particular class. In the case of absence
of objects from a particular class the corresponding HOF
descriptor is set to the zero vector. Let C be the number of
classes the detector can predict, Nc the number of objects
found of class c. The early object class motion descriptors are
formed as follows:

Dc =
1

Nc

Nc∑
j=1

HOF32, c = 1 . . . C (1)

By concatenating L2 normalized motion descriptors for each
class we get a complete description for a pair of consecutive
frames in the window W :

Rf = {D1, D2, . . . , Dc} (2)

Finally, we concatenate those descriptors throughout W/2
frame pairs to get a complete representation of a micro-action
composed by the object’s movement patterns that appeared in
the window:

M = {R1, R2, . . . , RW/2} (3)

One problem with the accurate extraction of object motion
from egocentric videos is that very frequently the wearable
camera moves along with the person that is wearing it. As
a result global camera motion may overpower the delicate
dynamics of the objects’ motion that we are trying to capture.
Therefore we consider an alternative to the HOF descriptor that
is the MBH (motion boundary histogram) descriptor where the
optical flow field is first separated into its x and y component
and spatial derivatives are computed for each one of them.
This time we obtain a 32-dimensional for each component
(64-dimensional overall) and we follow the same procedure
to obtain the final descriptor as in the HOF descriptor case.
Because MBH is the gradient of the optical flow, any motion
that is happening constantly (global motion) is suppressed and
only information about changes in the flow field (i.e., motion
boundaries) is kept [18]. Compared to video stabilization and
motion compensation this is a faster method of discarding
global motion information.

C. Activity recognition

For a given activity sequence the extraction of micro-action
descriptors that represents a small sequence of W frames takes
place with a stride of S frames. We chose that value to be
exactly 1 second in all our experiments. This simply means
that for every micro-action descriptor M we skip 1 second
into the video before we begin extracting the next micro-
action descriptor. Contrary to using overlapping windows the
stride parameter was inserted to give our method a speed boost.
Given that the micro-action window W is chosen sufficiently
small it is guaranteed that the number of micro-actions for
an activity sequence will be enough for the activity to be
adequately represented.

In this section we describe how a micro-action vocabulary is
trained using the descriptors that have been extracted following
the previous section. Subsequently, all micro-action descriptors
extracted from all the training activity sequences are fed into a
Fisher encoding scheme. This way, a micro-action vocabulary
based on the most discriminating ones is constructed. The
computation of the most discriminating samples is performed
by applying unsupervised clustering (Gaussian Mixture Model
(GMM)) in the micro-action representation hyperspace.

Let {µj ,Σj , πj ; j ∈ RL} be the set of parameters for L
Gaussian models, with µj , Σj and πj standing respectively
for the mean, the covariance and the prior probability weights
of the jth Gaussian. Assuming that the D-dimensional early



Fig. 2. Computation of Micro-Action descriptor.

descriptor is represented as M i ∈ RD; i = {1, . . . , N}, with
N denoting the total number of descriptors, Fisher encoding
is then built upon the first and second order statistics:

f1j =
1

N
√
πj

N∑
i=1

qijσ
−1
j (xi − µj)

f2j =
1

N
√

2πj

N∑
i=1

qij [
(xi − µj)

2

σ2
j

− 1]

(4)

where qij is the Gaussian soft assignment of descriptor Mi to
the jth Gaussian and is given by:

qij =
exp[− 1

2 (Mi − µj)
T Σ−1

j (Mi − µj)]∑L
t=1 exp[−

1
2 (Mi − µt)T Σ−1

j (Mi − µt)]
(5)

Distances as calculated by Eq. 4 are next concatenated
to form the final 2LD-dimensional Fisher vector, FX =
[f11, f21, . . . , f1L, f2L], that characterizes each activity se-
quence. The final Fisher encoding for a specific activity
sequence can now be classified using an SVM or a Neural
Network classifier.

III. EXPERIMENTAL RESULTS

A. Dataset

We performed our experiments in the ADL dataset [15].
It is composed of videos recorded with a wearable camera
from 20 different persons. The videos contains very realistic
scenes of daily living and is challenging due to the existence of
global camera motion as a result of the camera movement. The
objects are also in many cases occluded. Activity start time and
end time annotations and object annotations are available for
each one of the 20 videos. From the 48 different classes for
objects that are available in the current version of the dataset
we select the 34 most frequently annotated to train our object
detector. Those are: ”tv remote”, ”tea bag”, ”towel”, ”door”,

”pan”, ”knife/spoon/fork”, ”cell phone”, ”soap liquid”, ”vac-
uum”, ”detergent”, ”tv”, ”pills”, ”tap”, ”fridge”, ”blanket”,
”microwave”, ”container”, ”cell”, ”dent floss”, ”mug/cup”,
”person”, ”toothbrush”, ”food/snack”, ”book”, ”tooth paste”,
”dish”, ”trash can”, ”kettle”, ”bottle”, ”comb”, ”laptop”,
”pitcher”, ”oven/stove”, ”washer/dryer”. We also select a
subset of 18 activity classes as in [21] to train our activity
recognition algorithm so as to follow similar approaches with
previous works and present comparable results.

B. Experimental work

In this section we describe the experiments that we made
so as to select the best parameters for our activity recognition
algorithm and compare the two proposed descriptors (HOF,
MBH) to see their applicability. Furthermore, we accumulated
and present activity recognition results for each class for our
two best models in the form of confusion matrices. Finally,
we present a comparison of our results with other SoA works
for the ADL dataset so that we can prove the applicability of
our algorithm.

To train our object detector we used the first 6 videos of
the ADL dataset setting the detection rate to 15 frames as
mentioned previously. We experimented with two different
durations for the temporal window: W = 90 and W = 60
frames. Those two values correspond to 3 seconds and 2
seconds respectively for the videos of the ADL Dataset which
were recorded at 30fps. Considering that the activities average
duration is in the order of minutes in this dataset, we manage to
get enough micro-action descriptors assigned to each activity
and simultaneously capture more complex object motions
through time. Furthermore, we show that micro-actions of 3
or 2 seconds are long enough for our method to perform close
to SoA levels. The two choices for our temporal window W
proves to be convenient for algorithmic speed considerations as
well. The length of the micro-action descriptor is W

2 ×34×32
for the HOF descriptor and W

2 × 34 × 64 for the MBH
descriptor.



As a means of dimensionality reduction we perform Prin-
cipal Component Analysis on our low level descriptors. PCA
guarantees maximum variance of the samples in the lower
dimensionality space. We chose two possible reductions in
our experiments: 80 and 256 components. This way, our early
micro-action descriptor’s dimensionality reduces from some
thousand components to only a couple of hundreds. This also
aids the process further down the line as the Fisher encoding
scheme will multiply that amount by double the vocabulary
size. Additionally, we experiment with two different vocabu-
lary sizes using 32 or 64 words.

For the final step, we deploy as our classifier a fully
connected neural network (NN1) with a depth of two layers of
width 512 and 256 accordingly, using RELU activations, 50%
chance of dropout between layers and softmax activation in
the output layer. Another similar architecture (NN2) was also
deployed with half the amount of neurons for each layer (256
in the first layer and 128 in the second) and a linear SVM
classifier as well.

To evaluate the action recognition performance as in [21],
we performed the leave-one-person-out cross-validation
method for every parameter combination we discussed and
finally we report the per-class average precision (mAP) score.
Tables I and II present analytically our scores for every
experiment. As it is shown choosing 256 components in PCA
results in significant performance boost when combined with
a larger temporal window. Choosing 80 components resulted
in better performance in some cases of the shorter temporal
window. This behavior is somewhat expected since the more
lengthy the temporal window becomes, the dimensionality of
the micro-action descriptor gets higher and as a result less
components must be discarded. Moreover increasing the size
of the vocabulary from 32 to 64 failed to improve our results
and especially when using the shorter temporal window. This
proves that using a smaller vocabulary consisting of 32 words
is enough to get good coverage of the most discriminant micro-
actions of the entire dataset. Overall, the best models came
from the combination of 256 PCA components coupled with
a GMM vocabulary of size 32 and the neural network archi-
tecture with the most learnable parameters (NN1). Finally, we
can see that the MBH descriptor almost entirely outperformed
the HOF descriptor for every experiment with a temporal
window of 60 frames and that the performance of the two was
comparable for a window of 90 frames. This is an indication
the MBH has to offer more when micro-action extraction is
more refined in time.

In Table III, we compared the accuracy rates of our best
models to the ones that are mentioned in the literature. As
already described we followed the evaluation procedure in [21]
in order to present comparable results. As we can see, the
MBH version of our method outperformed every other. The
HOF descriptor is also highly ranked.

Next, we select our top two models (one for each descriptor)
and train them for the first 6 videos of the dataset. We present
the test set confusion matrices in Figures 3 and 4. As we can
see, MBH performed better than HOF in most of the classes

TABLE I
ACTIVITY RECOGNITION RESULTS FOR HOF DESCRIPTOR

Model comparison (mAP%) for HOF descriptor

SVM NN1 NN2

W 90 + PCA 80 + GMM 32 43.19% 52.40% 47.07%
W 90 + PCA 80 + GMM 64 46.22% 51.04% 51.56%

W 90 + PCA 256 + GMM 32 45.21% 52.86% 51.86%
W 90 + PCA 256 + GMM 64 46.22% 51.03% 51.56%

W 60 + PCA 80 + GMM 32 43.51% 50.98% 48.66%
W 60 + PCA 80 + GMM 64 43.24% 47.34% 44.69%

W 60 + PCA 256 + GMM 32 46.30% 48.07% 47.66%
W 60 + PCA 256 + GMM 64 45.73% 46.81% 45.53%

TABLE II
ACTIVITY RECOGNITION RESULTS FOR MBH DESCRIPTOR

Model comparison (mAP%) for MBH descriptor

SVM NN1 NN2

W 90 + PCA 80 + GMM 32 41.06% 52.96% 53.88%
W 90 + PCA 80 + GMM 64 39.89% 49.16% 51.23%

W 90 + PCA 256 + GMM 32 41.34% 53.12% 50.02%
W 90 + PCA 256 + GMM 64 43.61% 54.88% 50.25%

W 60 + PCA 80 + GMM 32 49.37% 57.09% 54.57%
W 60 + PCA 80 + GMM 64 47.17% 52.60% 50.93%

W 60 + PCA 256 + GMM 32 45.62% 57.14% 55.58%
W 60 + PCA 256 + GMM 64 42.43% 50.91% 50.24%

that heavy camera motion is expected, like the ”washing
dishes” or ”drinking water” activities, because it simulates
a compensated motion and it proves to be more appropriate
when wearable cameras are used. While the action recognition
overall has improved with the use of the MBH descriptor as
opposed to HOF, the drawbacks of not incorporating informa-
tion about the active or passive status of the objects is certainly
evident here. Both methods perform badly in activities that the
same object classes appear frequently. Specifically, confusion
seems to exist between the classes ”making tea” and ”making
coffee” because it almost always involve person interactions
with the same object classes. Another similar example is
the confusion between the ”combing hair”, ”brushing teeth”,
and ”dental floss” classes that are all taking place inside a
bathroom with the same objects being visible from the camera.

TABLE III
COMPARISON WITH SOA ON THE ADL DATASET

Method Performance (mAP%)

Boost-RSTP [13] 33.7%
Boost-RSTP + OCC [13] 38.7%

Bag-of-objects [15] 32.7%
Bag-of-objects + Active model [15] 36.9%

Cascaded Interactional Network [21] 55.2%

Ours - Bag-of-Micro-Actions with HOF (best) 52.86%
Ours - Bag-of-Micro-Actions with MBH (best) 57.14%



Fig. 3. Confusion matrix of our activity recognition method with HOF
descriptors.

Fig. 4. Confusion matrix of our activity recognition method with MBH
descriptors.

IV. CONCLUSIONS

In this paper, we introduced a new approach for activity
recognition from wearable cameras by detecting objects and
then incorporating their motion patterns into low level micro-
action descriptors. We represented activities using a Bag-
of-Micro-Actions scheme using GMM clustering and Fisher
vector encoding. Our next steps will be to develop an object
detection algorithm that discriminates between active and
passive objects so as to weight those two classes of objects

differently and to leverage hand movements in order to include
gesture patterns into the overall framework.
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[18] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Action recognition by
dense trajectories. In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 3169–3176. IEEE, 2011.

[19] X. Wang, L. Gao, J. Song, X. Zhen, N. Sebe, and H. T. Shen. Deep
appearance and motion learning for egocentric activity recognition.
Neurocomputing, 275:438–447, 2018.

[20] Y. Yan, E. Ricci, G. Liu, and N. Sebe. Egocentric daily activity
recognition via multitask clustering. IEEE Transactions on Image
Processing, 24(10):2984–2995, 2015.

[21] Y. Zhou, B. Ni, R. Hong, X. Yang, and Q. Tian. Cascaded interactional
targeting network for egocentric video analysis. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
1904–1913, 2016.


