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Abstract. Earth Observation (EO) Big Data Collections are acquired
at large volumes and variety, due to their high heterogeneous nature. The
multimodal character of EO Big Data requires effective combination of
multiple modalities for similarity search. We propose a late fusion mech-
anism of multiple rankings to combine the results from several uni-modal
searches in Sentinel 2 image collections. We fist create a K-order tensor
from the results of separate searches by visual features, concepts, spa-
tial and temporal information. Visual concepts and features are based
on a vector representation from Deep Convolutional Neural Networks.
2D-surfaces of the K-order tensor initially provide candidate retrieved
results per ranking position and are merged to obtain the final list of
retrieved results. Satellite image patches are used as queries in order to
retrieve the most relevant image patches in Sentinel 2 images. Quantita-
tive and qualitative results show that the proposed method outperforms
search by a single modality and other late fusion methods.
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1 Introduction

The amount of Earth observation (EO) data that is obtained increases day by
day due to the multitude of sources orbiting around the globe. Each satellite
image has a collection of channels/bands that provide a variety of measurements
for each place on Earth. This advance of the satellite remote sensing technology
has led to quick and precise generation of land cover maps with concepts (snow,
rock, urban area, coast, lake, river, road, etc.) that distinguish the characteristics
of the underlying areas, and provide beneficial information to global monitoring,
resource management, and future planning.

Searching in large amounts of EO data with respect to a multimodal query
is a challenging problem, due to the diversity and size of multimodal EO data,
combined with the difficulty of expressing desired queries. The multimodal char-
acter of satellite images results from the various number of channels (e.g. Red,
Green, Blue, NIR, SWIR, etc.) and associated metadata (date, time, geographi-
cal location, mission, etc.). Each satellite image can be considered as a collection
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of satellite image patches with semantic information about each one of them, as
concepts correspond to each patch (e.g. urban area, rock, water, snow, etc.).
The main challenge in searching for similar satellite image patches seems to
be the combination of multiple heterogeneous features (modalities) that can be
extracted from collections of satellite images (e.g. low-level visual descriptors,
high-level textual or visual features, etc.). The aforementioned combination pro-
cess is known as multimodal fusion. The effective combination of all available
information (visual patterns and concepts, spatial and temporal) results to more
effective similarity search, in the case of multimodal items such as Sentinel 2 im-
ages, or patches of them. The representation of each modality is also challenging,
due to the availability of several Neural Network architectures that provide fea-
ture vectors and are trained to extract concepts.

Our contribution is summarized as follows. First, we propose a novel late
fusion mechanism that combines K modalities through a K-order tensor. This
tensor is generated by the results of multiple single-modality searches, which
then provides the final merged and unified list of retrieved results through its
2D tensor surfaces. In addition, we propose a custom neural network for concept
extraction in satellite image patches which outperforms similar and standard
Neural Network architectures.

The paper is organised as follows. Section 2 presents relevant works in multi-
modal fusion for similarity search in information retrieval. Section 3 presents our
proposed methodology, where each single modality provides a list of retrieved
results and the K lists of rankings are fused. In Section 4 we describe the dataset
we have used, the settings, as well as quantitative and qualitative results. Finally,
Section 5 concludes our work.

2 Related Work

There are two main strategies for multimodal fusion with respect to the level,
at which fusion is accomplished. The first strategy is called early fusion and
performs fusion at the feature level [5, 12], where features from the considered
modalities are combined into a common feature vector. Deep learning [7] makes
use of deep auto-encoders to learn features from different modalities in the task
of cross-modal retrieval. Similarly, [18] proposed a mapping mechanism for mul-
timodal retrieval based on stacked auto-encoders. This mechanism learns one
stacked auto-encoder for each modality in order to map the high-dimensional
features into a common low-dimensional latent space. Modality-specific feature
learning has also been introduced in [17], based on a Convolutional Neural Net-
work architecture for early fusion. The second strategy is the late fusion that
fuses information at the decision level. This means that each modality is first
learned separately and the individual results are aggregated into a final common
decision [19]. An advantage of early fusion inspired approaches [4] is the fact that
it utilises the correlation between multiple features from different modalities at
an early stage. However when the number of modalities increases, there is a de-
crease in their performance due to the fact that this makes it difficult to learn the
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cross-correlation among the heterogeneous features. On the other hand, late fu-
sion is much more scalable and flexible (as it enables the use of the most suitable
methods for analysing each single modality) than early fusion. With respect to
graph-based methods and random-walk approaches [1] present a unifying multi-
media retrieval framework that incorporates two graph-based methods, namely
cross-modal similarities and random-walk based scores. However, the fusion is
performed at the similarity level, before the retrieval of multiple ranked lists.

In remote sensing image retrieval task both traditionally extracted features
and Convolutional Neural Networks (CNN) have been investigated with the
latter ones presenting performance advantage. CNN models that aim for both
classification prediction and similarity estimation, called classification-similarity
networks (CSNs), outputs class probability predictions and similarity scores at
the same time [10]. In order to further enhance performance, the authors com-
bined information from two CSNs. “Double fusion” is used to indicate feature
fusion and score fusion. Moreover, [11] proposed a feature-level fusion method
for adaptively combining the information from lower layers and Fully Connected
(FC) layers, in which the fusion coefficients are automatically learned from data,
and not designed beforehand. The fusion is performed via a linear combination
of feature vectors instead of feature concatenation. Another work is that of [16],
who performed multiple SAR-oriented visual features extraction and estimated
the initial relevance scores. For the feature extraction, they constructed two
bag-of-visual-words (BOVWs) features for the SAR images and another SAR-
oriented feature, the local gradient ratio pattern histogram. The authors calcu-
lated a set of initial relevance scores and constructed the modal-image matrix,
then they estimated the fusion similarity and eventually re-ranked the results
returned based on this similarity. The work of [9] uses multiple type of features
to represent high-resolution remote sensing images. One fully connected graph
and one corresponding locally connected graph were constructed for each type
of feature. Furthermore, a fused graph was produced by implementing a cross-
diffusion operation on all of the constructed graphs. Then, from the fused graph,
the authors obtained an affinity value between two nodes that directly reflects
the affinity between two corresponding images. Eventually, in order to retrieve
the similar images retrieval, the affinity values between the query image and the
other images in the image dataset are calculated. K-order tensors appear also
in graph-based fusion mechanisms, as in [2], mainly for early fusion of multiple
modalities for the creation and learning of a joint representation learning.

Contrary to these approaches, we perform an unsupervised late fusion of
multiple rankings, without the construction of a joint representation learning
at an early stage. Our late fusion approach first aims to optimize each single-
modality search, either with existing features or with customized Deep Neural
Network architectures. Our late fusion approach is agnostic to the representation
of each modality as a vector an is easily adaptable to any meta-search engine.
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3 Methodology

For the retrieval of similar-to-a-query q content in satellite image collections S,
different modalities are combined, each one representing a different aspect of
the satellite images. The considered modalities are: i) visual features, ii) visual
concepts, and iii) spatiotemporal information (geographical location and time).

The overall framework (Figure 1) involves initially a multimodal indexing
scheme of each satellite image as an item with multiple modalities, such as visual
features from several channels, visual concepts, spatial and temporal informa-
tion. Each modality provides a similarity score and a ranked list of retrieved
items that need to be combined so as to obtain a unique ranked list of satellite
image patches. The query in the image collection per modality then provides a
ranked list of items which are relevant to the query q, and a tensor is created
(Figure 2). Thirdly, a bi-modal fusion of the retrieved results follows for each
2D surface of the created tensor and the rankings are merged in a late fusion
approach, as shown in Figure 3.

Fig. 1. Overall framework of our proposed retrieval of multiple modalities.

3.1 Late fusion of multiple modalities

The proposed approach fuses the output of K modalities, where K > 2. For
each modality, we have N retrieved results and thus we have K such lists. We
set as L the K-order tensor of the retrieved lists, l1, l2, . . . , lK . A single element
Lr1,r2,...,rK of L is obtained by providing its exact position through a series of
indices r1, r2, . . . , rK , defined as follows:

Lr1,r2,...,rK =


1, if the same element is ordered as r1 in list l1,

as r2 in list l2, . . . , and as rK in list lK

0, otherwise

(1)
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Given the created tensor L (2), one tensor 2D surface is defined for each pair
of modalities (m1,m2),m1 ≤ m2, 1 ≤ m1,m2,≤ K.

Fig. 2. Tensor creation from multiple lists of rankings.

For each tensor surface L(m1,m2), we denote by Lrm1
≤j,rm2

≤j(m1,m2) the
tensor surface that is created only by the top-j retrieved results for the modal-
ities m1 and m2. Similarly, we denote by Lrm1

≤j−1,rm2
≤j−1(m1,m2) the tensor

surface that is created only by the top-(j−1) retrieved results for the modalities
m1 and m2. We create the list Pj , by keeping only the elements of the matrix
Lrm1

≤j,rm2
≤j(m1,m2) which are not elements of Lrm1

≤j−1,rm2
≤j−1(m1,m2):

Pj = Lrm1
≤j,rm2

≤j(m1,m2)	 Lrm1
≤j−1,rm2

≤j−1(m1,m2) (2)

If max{Pj} = 1 then there is an element that appears for the first time
in more than one modalities, with rank j. In Figure 3 we illustrate the pas-
sage from bi-modal fusion through tensor 2D surfaces to the final multimodal
ranking of the retrieved results. For the tensor 2D surface that is extracted
from visual concepts and visual features on the top-left we get the sequence of
lists P1 = {0}, P2 = {0, 0, 0}, P3 = {0, 0, 0, 0, 0}, P4 = {0, 0, 0, 0, 0, 0, 0}, and
P5 = {0, 0, 1, 0, 0, 0, 0, 0, 0}. For the multimodal ranking of the visual concepts
and visual features we get max{Pj} = 0 for j = 1, 2, 3, 4, and max{P5} = 1, so
the image ID ‘2’ is temporarily ranked as 5th in the ”Features/Concepts” list.
The same procedure is followed for all pairs of modalities. Afterwards, the image
IDs in each position provide altogether a merged rankings ordered list as shown
in Figure 3, where duplicates are removed and the final list is obtained.

In the following we present the uni-modal search per modality, before the
creation of the unifying tensor Lr1,r2,...,rK .
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Fig. 3. Merging multiple lists from tensor surfaces.

3.2 Visual similarity search

For an effective search with respect to visual information, a suitable vector rep-
resentation of the multi-channel Sentinel 2 image is required. After the transfor-
mation of each satellite image patch into embedding vectors, Euclidean distance
calculations between the query q and the collection S represent visual similarity
with respect to the content. Several visual feature representations are explored
and the results are presented in Section 4. The visual similarity search is based
on feature vectors that are extracted from pretrained networks and then Eu-
clidean distance calculation follows on the top-N results. Feature vectors from
Sentinel 2 images are extracted from specific intermediate layers of pretrained
VGG19, ResNet-50 and Inception-ResNet-v2 networks [14]. Since ImageNet is
a dataset of RGB images we created an input dataset of same type of images,
i.e. Red (band 4), Green (band 3) and Blue (band 2) Sentinel-2 bands so as
to form 3-channel patches. In VGG-19 convolutional neural network features
are extracted from fc1 (dense) and fc2 (dense) layers, with feature size of 1 x
4096 float numbers per patch. In ResNet-50 features are extracted from avg pool
(GlobalAveragingPooling2) layer, with feature size of 1 x 2048 float numbers per
patch. Finally, in Inception-ResNet-v2, which is a convolutional neural network
with 164 layers the network has an image input size of 299-by-299.

3.3 Visual Concept search

A Custom Deep Neural Network is created for the extraction of visual concept
vectors and therefore to support the visual concept search by Euclidean distance.
The network has a structure that resembles VGG architecture (Figure 4). It
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contains blocks of convolutional layers with 3x3 filters followed by a max pooling
layer. This pattern is repeating with a doubling in the number of filters with
each block added. The model will produce a 7-element vector with a prediction
between 0 and 1 for each output class. Since it is a multi-label problem, the
sigmoid activation function was used in the output layer with the binary cross
entropy loss function. For input we tested with both 3 channel images (as done
with the pretrained networks) and also with images that consisted of 5 bands of
Sentinel 2 images, i.e. the Red (band 4), Green (band 3), Blue (band 2), with
the addition of NIR (band 8) and SWIR (band 11) for the 5-channel input.

Fig. 4. The custom DCNN for visual concept search in 5-channel Sentinel 2 images.

3.4 Spatial and temporal search

Given a query image q, we exploit the “datetime” and “geolocation” metadata
for spatiotemporal search. Our purpose is to maximise the proximity with respect
to time and location between the query satellite image patch and the retrieved
items. Our images are indexed in a MongoDB1, which allows spatial search
through the geoNear function. This function returns items ordered from the
nearest to farthest from a specified point, i.e. the centroid of the query satellite
image patch. Regarding the temporal information which is indexed in IsoDate
form, sorting by timestamp provides a list of items which are temporaly close
to the query image. Each modality allows unimodal search to retrieve a single
list o returns a ranked similarity list. Performing late fusion on the formed lists
returns the final sorted list with the closest images to the given query.

4 Experiments

4.1 Dataset Description

The BigEarthNet [15] dataset was selected for our experiments. The dataset
contains ground-truth annotation about Sentinel 2 level-2A satellite images and
consisted of 590,326 patches. Each image patch was annotated by the multi-
ple land-cover classes (i.e., multi-labels) that were extracted from the CORINE

1 https://www.mongodb.com/
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Land Cover (CLC) inventory of the year 2018. Based on the available Corine
land cover classes we group the closely related sub-classes of the CLC, form-
ing seven major classes. We selected around 130,000 patches, of resolution 120
x 120 pixels in order to preserve a balance among the number of items of the
different classes/concepts: 1) class “rice” 2) class “urban” merges “Continuous
urban fabric” and “Discontinuous urban fabric”; 3) class “bare rock”; 4) class
“vineyards”; 5) class “forest” merges “Broad-leaved forest”, “Mixed forest”, and
“Coniferous forest”, 6) class “water” merges “Water courses”, “Water bodies”
and “Sea and ocean” classes; 7) class “snow”.

4.2 Settings

For training of the custom DCNN and all pretrained deep neural networks we
used Keras. Ssatellite image metadata and the extracted feature and concept
vector are stored in MongoDB, that also allows spatial and temporal search.
We select 10 test images for each of the seven classes parsed from the Corine
Land Cover inventory, and thus we ended up with 70 test image patches. The
procedure followed for obtaining the similarity according to the visual content
involves the following steps: a) we extract feature vectors for each patch of the
dataset, including the test images, b) we calculate the distance between the
query image and the rest images of the dataset, c) we retrieve the images with
the lowest distance from the query-test patch, and d) we calculate the mAP for
the top 30 results. The learning rate for the 5-channel custom DCNN is 0.0005,
the batch size is 256, and we used Adam optimizer with 200 epochs. To obtain
the best possible results we enabled dropout regulation. We used the models
with the best validation scores at a 5-Fold Cross-Validation.

4.3 Results

For the fusion of the results we tested our algorithm against three seminal rank
fusion algorithms, namely Borda count [3], Reciprocal [13] and Condorcet [6]
fusion, since they are suitable for Big Multimedia Data search [8].

Table 1. Comparison of fusion methods with mean average precision (mAP)

Classes / Method Ours Borda Reciprocal Condorcet
forest 89.56% 88.38% 60.11% 52.85%
rice 97.05% 98.92% 39.51% 66.61%
rock 62.90% 64.69% 26.53% 20.88%
snow 91.46% 89.44% 67.04% 15.22%
urban 79.96% 74.90% 53.72% 29.03%
vine 88.40% 88.25% 28.22% 19.54%
water 97.35% 97.97% 78.42% 76.05%

mAP: 86.67% 86.08% 50.51% 40.03%
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For the evaluation of the various fusion methods we used the mean Average
Precision (mAP) metric on the top-30 results that were retrieved. The compar-
ison among our fusion method and the seminal methods of Borda, Condorcet
and Reciprocal rank fusion, are shown in Table 1.

For obtaining these late fusion results, we performed experiments to iden-
tify the best performing unimodal search in visual features and concepts. The
results for the pretrained and the custom neural networks are shown at Table 2
using Mean Average Precision as metric and are computed against the Corine
Land Cover (CLC) annotation. The VGG19 architecture provides the optimal
features for the multimodal retrieval problem. ResNet50 comes second and the
Inception v2 underperforms. Regarding the Visual concept similarity, the mAP

Table 2. Mean average precision comparison on Feature extraction of seven classes
among Pretrained networks, custom DNN and Colour Histogram methodologies.

Pretrained Deep Neural Networks Custom Deep Neural Network

classes
VGG19
fc2

VGG19
flatten

ResNet50
avg pool

Inception
ResNetV2
avg pool

5 bands
flatten

5 bands
dense

3 bands
flatten

3 bands
dense

top #10
forest 83.02% 81.17% 81.66% 63.70% 76.52% 80.38% 49.22% 50.89%
rice 86.79% 75.28% 57.68% 29.21% 25.89% 17.41% 30.40% 11.57%
rock 62.21% 76.38% 59.04% 58.09% 58.37% 52.96% 86.56% 60.44%
snow 86.37% 43.96% 91.85% 88.46% 74.93% 87.79% 48.03% 79.57%
urban 68.22% 45.46% 68.25% 73.43% 73.71% 66.53% 34.60% 42.77%
vine 74.74% 76.07% 67.85% 42.75% 45.44% 47.78% 59.67% 39.51%
water 98.78% 100.00% 100.00% 96.20% 100.00% 97.11% 95.22% 92.68%

mAP 80.02% 71.19% 75.19% 64.55% 64.98% 64.28% 57.67% 53.92%

top #20
forest 78.72% 80.07% 77.63% 62.08% 76.12% 70.72% 45.98% 51.55%
rice 82.09% 72.58% 49.74% 31.58% 21.01% 15.58% 30.40% 12.80%
rock 50.41% 62.01% 51.59% 50.85% 46.30% 44.57% 83.94% 54.99%
snow 81.07% 44.04% 90.92% 88.09% 74.52% 81.62% 49.20% 66.76%
urban 61.27% 40.80% 64.92% 70.20% 69.26% 60.82% 30.85% 38.54%
vine 65.77% 70.44% 61.53% 41.98% 41.55% 43.53% 44.75% 34.45%
water 98.83% 100.00% 99.66% 97.00% 99.89% 96.58% 96.01% 92.27%

mAP 74.02% 67.13% 70.86% 63.11% 61.24% 59.06% 54.45% 50.19%

results for the pretrained and the custom neural networks are shown at Table
3. The concepts are extracted in this case directly by the last prediction layer.
The 5-channel custom DCNN obtains the best mAP results. Although it was
expected that adding more channels in the DCNN architecture would lead to
better performance, we observe in Table 2 that the pretrained network performs
better than the custom.

We demonstrate the top-10 retrieved results for our proposed approach in
Figure 5. The satellite image patch on the left is the query and the retrieved re-
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Table 3. Mean average precision comparison on Concept extraction of seven classes
among Pretrained networks, custom DNN and Colour Histogram methodologies.

Pretrained Deep Neural Networks Custom Deep Neural Network

classes
VGG19
predictions

ResNet50
fc1000

Inception
ResNetV2
fc1000

classes
5 bands
dense (last)

3 bands
dense (last)

top #10
forest 63.59% 71.28% 66.67% forest 80.38% 49.22%
rice 19.60% 3.25% 34.16% rice 17.41% 30.40%
rock 22.70% 14.13% 30.68% rock 52.96% 86.56%
snow 63.48% 84.47% 91.14% snow 87.79% 48.03%
urban 55.66% 69.17% 58.85% urban 66.53% 34.60%
vine 44.78% 29.43% 48.55% vine 47.78% 59.67%
water 93.44% 97.47% 99.77% water 97.11% 95.22%

mAP 51.89% 52.74% 61.40% mAP 64.28% 57.67%

top #20
forest 61.38% 66.58% 60.16% forest 70.72% 45.98%
rice 18.49% 3.54% 27.07% rice 15.58% 30.40%
rock 22.98% 15.85% 28.73% rock 44.57% 83.94%
snow 62.33% 83.91% 87.47% snow 81.62% 49.20%
urban 54.03% 65.62% 54.58% urban 60.82% 30.85%
vine 39.65% 28.15% 43.32% vine 43.53% 44.75%
water 93.49% 96.73% 98.52% water 96.58% 96.01%

mAP 50.33% 51.48% 57.12% mAP 59.06% 54.45%

Fig. 5. Query and top-10 retrieved results with the proposed late fusion approach.
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sults follow. The results show that, for the urban query, most of the misclassified
results are rice and these two classes resemble to each other making difficult for
the DCNNs to discriminate among them. Moreover, some of the retrieved im-
ages are of the forest class, because in some cases they depict sparse country-side
areas mixed with snow. Furthermore, in the “vineyards” query, almost all the
misclassified images were actually urban patches, and there is great similarity
between these two classes, and even for a human it is difficult to classify. Finally,
rock queries are mostly rocky areas near water, resulting to fetching many water
patches.

5 Conclusions

In this work we proposed a novel late fusion method that combines the outputs of
K ranking lists using a K-order tensor approach. The method is agnostic to the
representation of each modality in each unimodal search. However, we examined
the performance of several DCNN architectures and we proposed one for concept
search in 5-channel Sentinel 2 image patches. Satellite images contain more than
the three optical RGB channels that can also be exploited in unimodal similarity
search. Our overall framework uses 5 channels from Sentinel 2 image patches to
extract concepts, and combines them with visual features and spatiotemporal
information to allow multimodal similarity search scenarios. Finally, the results
show the importance of combining multiple modalities of an image in similarity
search and we illustrate the top-10 results per late fusion method and per query.
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