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Abstract—Lately, we observe an increase in the development of
Internet of Things (IoT) systems. The interconnection of multiple
devices offers improved solutions in many sectors. In the current
paper, we describe the localization framework of a project that
incorporates IoT technologies to face unwanted incidents in
crowded spaces. The localization framework responds to the
scenario of a missing child in crowded outdoor spaces and
combines Received Signal Strength Indicator (RSSI), Bluetooth
low energy tags and trilateration. The experimental results of
trials performed in two outdoor spaces are also reported. This
framework is currently being tested in the actual pilot premises.

I. INTRODUCTION

In the last years we have noticed a rise in the number
of smart buildings, cities or environments in general. These
smart environments exploit a number of Internet of Things
(IoT) devices and applications in real life applications of
various domains, like health, security and marketing. In the
IoT applications of the security domain, a frequent task that
needs to be solved is indoor or outdoor localization.

In this paper we analyze the localization framework of
Desmos project. DESMOS is a framework for the intercon-
nection of smart infrastructures, devices and applications that
aims to increase security in crowded environment for citizens,
especially for visitors and tourists. The platform requires the
collaboration of people and devices. The pilot trials will take
place in the smart city of Trikala, Greece, in two locations,
a central square and a theme park. There are three use case
scenarios that refer to a) on time treatment of health incidents

(MylosKarpa, CityKarpa), b) localization of missing children
in the premises of Mylos Theme Park (MylosKidFinder) and
c) real time reporting and handling of criminal and violent
acts (MylosSense, CitySense) [4].

The localization framework is mostly relevant to the My-
losKidFinder scenario. This scenario is approached with an
RSSI-based outdoor localization solution. Stuff of the theme
park will be able to identify the location of children reported
missing by their parents, inside the theme park. Parents will be
given a smartband with a BLE tag as they enter the theme park.
The smart band will be worn by the children and the parent/
guardian will install an application on their phones. In case a
child goes missing, the parent will press an alarm button in the
application that will send a notification to the working stuff,
who have the respective version of the application installed
[3].

The selection of Bluetooth Low Energy beacons for indoor
and outdoor localization in the project, was based on their
energy consumption and low cost, reasons that justify their
availability in multiple devices [11]. In previous work, we
used the smartbands with the attached BLE beacons, to collect
data from indoor spaces and test several algorithms for the
localization, using the fingerprint approach [5]. The data
collected were also made publicly available. Here, we present
data collected at outdoor spaces and present the results of the
localization procedure that will also be used in the pilots.

The rest of the paper is organized as follows: Section



2 reviews relevant literature. In Section 3 we present the
theoretical background of the framework, while Section 4
shows the experiments contacted. Section 5 outlines the final
localization framework and the conclusions along with future
goals are shown in Section 6.

II. RELATED WORK

There are two main algorithms utilizing RSSI to compute
the distance between the target and the reader; trilateration and
fingerprinting. Trilateration is based on the distance of a target
node from multiple fixed nodes. Using at least three fixed
nodes’ distance it is possible to estimate the exact position
of the target. Fingerprinting is based on a predefined map of
RSSI values at certain positions. This method can provide a
reasonable accuracy but has the downfalls of requiring training
of the system and being very sensitive to environmental
changes. It is also restricted to a certain environment that
the training has been performed and cannot be immediately
applied in other cases. Therefore, our interest lies in the
trilateration algorithm for position estimation.

In [6], the authors gathered multiple RSSI measurements
in fixed distances in direct view and the presence of a wall
obstacle using three SensorTags. Using the mean value of each
SensorTag at each known distance, they fitted a second-order
polynomial curve in the data of each tag. Using trilateration,
they compared the polynomial model with the path loss model
to convert measured RSSI values to a distance. Their proposed
polynomial model showed more accurate results, mainly in
greater distances. However, the unstable RSSI readings due to
obstacles causing fading and multipathing are a major drop
back.

In the same direction, the authors in [8] implement a
fitted distance curve to perform the distance calculation. The
calculated distance was smoothed using a median filter and an
intelligent filter for moving target, considering the maximum
speed a target can have. Although they found this method to
offer better accuracy, the results were not favorable since they
did not obtain accurate positions.

To mitigate RSSI fluctuations, the implementation of some
filtering is a common method. Kalman Filtering (KF) is
quite often chosen because its lightweight implementation
allows real-time tracking. The authors in [9] introduced KF to
improve position estimation accuracy. They developed an An-
droid application that receives filtered RSSI data to accurately
estimate the moving target’s position. By applying the KF, the
authors aimed to minimize the variance of the RSSI values,
thus improving the position estimation accuracy. Nevertheless,
their application is only able to determine the position of the
user at room level, not providing their exact position.

A system using KF with an improved trilateration algorithm
is proposed by [2]. Since the basic trilateration algorithm
is based on an ideal scenario, the authors used a weighted
trilateration method giving more weight to the node having
the smallest distance to the target. By applying the KF and
the improved trilateration algorithm, the authors achieved
high accuracy results, especially in the small room scenario.

Another research using KF with an improved trilateration
method is [7]. Their proposed method is based on minimizing
the error of the RSSI measurements covering all cases to
estimate the most accurate position for the target. Although
their results showed very high accuracy, they only tested their
system in line-of-sight (LOS) cases.

Authors in [10] proposed a method for indoor localization of
a mobile robot. Using a trilateration method that minimizes the
fractional error and applying a particle filter they were able to
achieve very low error. They reported that only the use of their
improved trilateration algorithm was a huge improvement,
compared to the classic trilateration algorithm. By utilizing
the particle filter in the trilateration results, they were able
to manage outliers, thus reducing the error even more. The
algorithm was tested in an indoor environment, a part of which
was filled with furniture. The presence of obstacles affected
their algorithm’s performance, but the mean error was still
below 1m.

III. METHODS

RSSI is a technique that finds the distance between the
transmitter and the receiver by measuring the signal strength
on the receiver [11]. Theoretically, the signal strength should
decrease as the transmitter moves further away from the
receiver. In reality, this is not always the case, since RSSI
is quite sensitive to noise, thus it requires filtering techniques
to get more homogeneous measurements.

Kalman filtering is used to eliminate the noise and smooth
the RSSI signals. RSSI values show high levels of discrepancy,
however the method is available in many devices and this
makes it preferable for such occasions. The noise in the RSSI
values is present even in outdoor environments. The following
Kalman filtering refers to static devices that transmit and
receive the signal [1].

Assuming a static state, the transition matrix Ak is set to
an identity matrix, and since there is no control, the control
matrix Bk is set to zero. As the state is modeled directly, the
observation matrix Hk is also set to identity. Therefore, the
transition and observation model can be turned down to:

xk = Akxk−1 +Bkuk + wk = xk−1 + wk, (1)

zk = Hkxk + vk = xk + vk, (2)

where wk and vk describe Gaussian noise. The prediction step
of the Kalman Filter is then:

x̂k|k−1 = x̂k−1|k−1, (3)

Pk|k−1 = Pk−1|k−1 +Rk, (4)

where Rk is the process noise which is set to a small value
(0.008). The Kalman gain is computed as:

Kk = Pk|k−1(Pk−1|k−1Qk)
−1 (5)



Qk is the measurement noise which is set to the variance of
the measurements. The final update is:

x̂k|k = x̂k|k−1 +Kk(x̂k|k−1–zk), (6)

Pk|k = (1–Kk)Pk|k−1 (7)

To demonstrate the effectiveness of Kalman Filter, we can
observe the results of its application over a sample of the
raw RSSI data from mobile 1 (Mob1) at CERTH premises in
Figure 1. The Kalman filter removes most of the noise of the
measurement, but, since it is a recursive method, it needs to
throw back a bit of its responsiveness.

After filtering, we need to relate the RSSI to distance. This
is achieved with the path-loss model (Eq. 8), a simple and
direct method to transform the RSSI measurements to actual
distance between the transmitter and the receiver [11].

RSSI = −10nlog10(d) + C (8)

In Eq. 8, n is the signal propagation exponent and C is the
reference RSSI value at 1m distance. After the transformation
of RSSI to distance, trilateration is used, in order to find the
coordinates of the user in a two dimensional map. Trilateration
needs three receiving nodes. Based on the distance of the
transmitter from the three nodes and their locations, the
position of the user in the map is determined [11].

Considering the position of the 3 receiving nodes A,B,C,
is given by the coordinates (x1, y1), (x2, y2), (x3, y3) respec-
tively, whose distances from the transmitter are d1, d2, d3
respectively, we can then calculate the coordinates of the
point of interest, i.e. the transmitter (x, y) using the following
equation:

(x− xi)
2 + (y − yi)

2 = d2i , i = 1, 2, 3 (9)

IV. EXPERIMENTAL RESULTS

Data were collected prior to the initiation of the first pilot
phase of the project, so as to test the devices and the algorithms
that would produce the best results. As already mentioned
in the introduction section, previous work of the team was
focused on collecting RSSI measurements from indoor spaces
and apply machine learning techniques for the prediction of
the true distance [5]. For the real time application though,
the machine learning approach was not considered suitable.
Taking into consideration the conditions of the pilot trials and
the devices used, we resulted in a framework that combines
Kalman filtering, the path loss model and trilateration as the
final step for the localization.

The first approach was to test the more simple scenario,
where both the child and the volunteer were steady. We utilized
different mobile phones since three at least are needed for the
trilateration and also because there will be a variety of different
devices used by the personnel that will take part in the pilots.
The use of multiple mobile phones also allows us to check the
variability of the RSSI measurements and how it affects the
RSSI transformation to distance. In the application at CERTH

premises, the user carrying the smart band was moving at a
fixed distance from the receiver.

In all of the following application examples, 100 RSSI
values were collected at each distance point. The RSSI values
of the 1 meter distance were used for the calibration. The
analysis was performed separately for each phone and the
RSSI values were filtered using Kalman filtering technique.
RSSI values collected at 1m were used for the calibration of
each phone in order to get a reference RSSI value at that
distance. The following results show the prediction of the
actual distance with the help of the path-loss model.

A. Application at Mylos premises

These data were collected during the Mill of Elves festival,
in an outdoor space with visitors. A total of 100 RSSI
measurements were collected at each of 1,3,5 and 7 meters
while both the transmitter and the receiver were static. Three
mobile phones were used as the receiving devices. It is obvious
from Table I that the transformations of RSSI to distance vary
a lot between distances and mobiles. Although a deviation of
1 to 2 meters is always expected with the RSSI technique, in
some cases, like the 7 meters distance of mobile 1 (mob1) this
was exceeded.

TABLE I
AVERAGE PREDICTED DISTANCES AT MYLOS PREMISES FOR EACH

MOBILE PHONE

Mob1 Mob2 Mob3
3m 0.9679 0.9456 2.6830
5m 5.6614 2.3512 2.4839
7m 2.8591 6.5568 2.4276

B. Application at CERTH premises

The data were collected at an outdoor space in the Center
for Research and Technology Hellas, using 3 mobile phones
as receivers at distances of 1,2,3,4,5,6, and 7 meters between
the smartband and the phones. The smartphones were static
and the smart band was worn by a volunteer who was moving,
preserving constant distance from the receivers. The number
of measurements collected from each smartphone at each dis-
tance was 100. Using the same technique previously discussed,
the results are shown in Table II. Our results demonstrate
the inconsistency of the RSSI transformation to distance in
different phones and distances. The error of the RSSI becomes
greater with the distance, e.g. the mobile 3 (Mob3) in Table
II.

V. LOCALIZATION FRAMEWORK

The pilot phase of these trials is currently ongoing and
there is still not an adequate amount of data to present here.
However, the trials conducted in the actual premises and with
the ”child” moving, showed that this framework approached
the real location successfully.



TABLE II
AVERAGE PREDICTED DISTANCES AT CERTH PREMISES FOR EACH

MOBILE PHONE

Mob1 Mob2 Mob3
2m 1.8158 2.0508 0.9520
3m 2.6017 3.03291 1.7081
4m 3.3232 3.8400 2.0290
5m 4.1475 4.0713 2.7896
6m 3.8506 4.3027 2.8882
7m 4.8269 6.8940 4.3863

Fig. 1. Raw and filtered RSSI data from mobile 1 at CERTH premises

A. Collection of data

The smartbands used for collecting data, function as a BLE
beacon. At intervals, packets are being broadcast from the
smartband. The packets include smartband’s name and MAC
address. The broadcast packets are being scanned from a
smart phone using Android. For each BLE device scanned, the
Android can report the received signal strength in dBm. With
the help of an application named ”Everygate”, we are able to
collect this information (Fig. 2). The application scans for BLE
beacons in range. Every 5 seconds, it pushes the scanned MAC
addresses together with the RSSI in a MQTT Broker. A topic
is created for each device that uses the application with several
subtopics. The topic name consists of the device’s IMEI. The
subtopics include the scan results, various information about
the device (operating system version, application version and
device datetime) and device’s location. In order to collect data
for specific device and smartband, a script has been developed.
The script uses a single-level wildcard in the IMEI topic to
subscribe to topics containing only the needed information
(i.e., the results from the BLE scan and the device’s location).
As such, the script receives information from all the devices
publishing to the broker about their BLE scan results and their
location. The data from the devices that are not used during
the data collection are discarded through a white-list filter in
the script. Specifically, a list of the IMEI of the devices that are

used in the data collection is provided to the script. In addition,
the smartband’s MAC address is being provided in order to
discard all other BLE devices that may be present during the
data collection process. Finally, the total amount of required
results is given. By knowing the total amount and the number
of devices, the script calculates how many results are needed
from each device. After the subscription to the topic, an object
is created for each smart phone in the white list containing the
IMEI, latitude, longitude, altitude and time of the device. The
object is updated each time new data are pushed about that
device. When a smart phone pushes scan results in the broker,
the script first checks if the device is of interest. If it is, it
iterates through the list of scan results and keeps only the
information of the smartband that is its MAC address is being
provided. Then, it creates a new record object consisting of
the smart phone information, smartband’s MAC address, RSSI
and the time that the scan was performed. Finally, it appends
the record in a list. When the desired number of data has
been collected, the script creates a CSV file. The first row
of the file contains the label for the data (IMEI, Latitude,
Longitude, Altitude, Device Time, RSSI, MAC, Scan time)
with the following rows containing the information from the
record list.

Fig. 2. Smart phones running the Everygate application collecting data from
a smartband. The IoT Hub contains a smart phone and a power adaptor.

B. RSSI to distance

Different mobile phones will be used to collect the RSSI
signals from the wearable sensors, thus this will cause addi-
tional noise to the measurements that will be obtained. It is
important to calibrate each mobile phone, before proceeding
with the transformation of RSSI values to actual distance.
During the calibration phase, the receiver node and the BLE
tag are placed at a fixed distance, in particular 1 meter, and
100 measurements are collected. The average RSSI value at the
fixed distance of 1 meter is needed for the RSSI to distance
equation. After the calibration phase, the new RSSI signals
collected, will be used as input to the path loss model (Eq.8),
to get the actual distance.



RSSI measurements are known to show discrepancies even
at the same distance. To eliminate this issue, the Kalman filter
technique was applied, to obtain more coherent measurements.
In the ”LostChild” scenario, the transmitter, which is the child,
is moving. The Kalman filtering technique applied, refers to a
steady transmitter. However, it can be used with the moving
transmitter also, as long as we update frequently [1]. One more
reason that allows the use of the particular filtering technique
is the transmission frequency of the RSSI signals, which is 1
signal per 5 seconds. The detailed steps of the transformation
of RSSI to distance, as applied in the experiments of the real-
time localization, are described below:

1) Collect 100 RSSI values at 1 meter distance from each
mobile device, that will participate in the pilot phases.
Apply Kalman filtering to eliminate the noise and then
compute the average RSSI value of each device.

2) Apply the Kalman filtering to the new RSSI values and
then apply path-loss equation (Eq. 8) to get the real
distances. For the near-real time application, we select
the three last obtained values to apply the filtering and
get the distances. The averaged value of the three calcu-
lated distances will afterwards be used in the trilateration
algorithm.

C. Trilateration

In the context of the MylosKidFinder use case, people
working in the theme park have an application installed in
their mobile devices that a) periodically sends their own
location to the system (i.e. latitude and longitude) and b)
receives the RSSI signals of the wearable devices that are used
by the children. The localization component of the system
then analyzes those RSSI values using the aforementioned
techniques and transforms them to distance. Given the position
of the 3 most recent observers of a given wearable device
with known coordinates (x1, y1), (x2, y2), (x3, y3) and known
distances from the point of interest (i.e. lost child), we can then
calculate the coordinates of the point of interest (x, y) using
the Eq 9. The distances between the child with the wearable
device and the mobile phones are calculated from the previous
steps.

VI. CONCLUSION

This paper presents the first version of the localization
framework of Desmos project. The project used low cost
devices with integrated BLE tags in combination with smart-
phones and custom applications, in order to locate a missing
child in outdoor spaces. RSSI technique was preferred due to
its availability in many devices. The same holds for the BLE
beacons that are cost effective, consume low energy and can
be found integrated in affordable devices that can be worn
by children. The trials conducted revealed that the proposed
framework performed adequately. However, the technologies
used, impose some limitations, such as the extend of distance
they can cover and the transmission frequency of the RSSI
values. Thus the framework is suitable for limited sized spaces.
In the project, this issue is mitigated by the spread of numerous

workers in the pilot premises, thus there will always be three
workers in the range of the missing child, that will be able to
locate it.

Issues we had to deal with during the trials, were the GPS
range in some outdoor spaces and the slow response of some
mobile phones. Future work includes the evaluation of the
existing framework after the completion of the first pilot phase
and the possible improvement of the algorithms so that they
incorporate movement more successfully.
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