
Fast Visual Vocabulary Construction for Image
Retrieval using Skewed-Split k-d trees

Ilias Gialampoukidis, Stefanos Vrochidis, and Ioannis Kompatsiaris

Information Technologies Institute, CERTH, Thessaloniki, Greece
{heliasgj,stefanos,ikom}@iti.gr

Abstract. Most of the image retrieval approaches nowadays are based
on the Bag-of-Words (BoW) model, which allows for representing an im-
age efficiently and quickly. The efficiency of the BoW model is related
to the efficiency of the visual vocabulary. In general, visual vocabularies
are created by clustering all available visual features, formulating spe-
cific patterns. Clustering techniques are k-means oriented and they are
replaced by approximate k-means methods for very large datasets. In
this work, we propose a faster construction of visual vocabularies com-
pared to the existing method in the case of SIFT descriptors, based on
our observation that the values of the 128-dimensional SIFT descriptors
follow the exponential distribution. The application of our method to
image retrieval in specific image datasets showed that the mean Average
Precision is not reduced by our approximation, despite that the visual vo-
cabulary has been constructed significantly faster compared to the state
of the art methods.

1 Introduction

Image retrieval has become very challenging over the last years, due to the large
amount of images, which are produced on a daily basis. Nowadays there are many
applications of image retrieval based on the query by visual example paradigm in
order to support personal photo organization, shopping assistance etc. However,
one of the main challenges today is the scalability and the performance in terms
of time of the image indexing and retrieval methods given the fact that they have
to cope with large amounts of images in small amounts of time. Searching in an
image collection for similar images is strongly affected by the representation of all
images. Spatial verification techniques for image representation, like RANSAC,
are computationally expensive and have been outperformed by Bag-of-Words
(BoW) models.

The image representation using the BoW model is based on the construc-
tion of a visual vocabulary of all visual descriptors in a dataset, in analogy to
the representation of text documents, using a vocabulary of visual words [12].
Efficient construction of visual vocabularies is done by clustering the set of all
available descriptors in a dataset. In the case of large datasets, the k-means clus-
tering techniques are replaced by approximate k-means methods [10], in order
to reduce the computational cost of the visual vocabulary construction, in terms



of time. However, even this approximate k-means algorithm [10] can be further
elaborated in terms of its speed. For example, in [9] it is stated that for 17M
descriptors and 1M clusters, a single iteration takes around 5 hours to complete
(on a single CPU). Assuming that after 20 iterations, the approximate k-means
algorithm is close to a solution, the visual vocabulary construction requires more
than 4 days processing time.

Nowadays, the most popular way to represent an image in a set of vectors
is using salient points such as SIFT descriptors [4].However, other image repre-
sentations have been proposed for image retrieval and object detection, such as
VLAD [3] and GIST [7]. In this work we focus our study on SIFT descriptors [4],
which is one of the most popular descriptors used nowadays for image retrieval.
After observing the values of SIFT in several datasets, we found strong evidence
that the values of the SIFT descriptors are exponentially distributed, sharing a
similar parameter λ, which can be quickly estimated as a function of the dataset.

The main research contributions of this work are:

– Show that the values of SIFT descriptors are exponentially distributed
– Construct faster k-d trees for SIFT descriptors by introducing a novel method

called “skewed-splits”
– Build visual vocabularies quickly using “skewed-splits”

Finally we evaluate our approach by performing several image retrieval tasks
with well-known image datasets.

In Section 2 we present existing approaches in the construction of visual vo-
cabularies. In Section 3 we show that, for several datasets, the values of SIFT de-
scriptors are exponentially distributed. The non-symmetric distribution of SIFT
descriptors is utilized for a modified construction of k-d trees and visual vocab-
ularies (Section 4), which are applied to two collections of images, in Section 5,
for image retrieval.

2 Related Work

The image retrieval task was tackled as a Bag-of-Words (BoW) model initially
in [12], where k-means clustering was employed for the construction of a visual
vocabulary, in analogy to the text retrieval techniques. The most frequent visual
words (they occur in almost all images) and very sparse terms are removed,
and the final results are filtered in terms of spatial consistency. The query and
each image are represented as a sparse vector of term (visual word) occurrences,
which are weighted using tf-idf scores. The similarity between the query and
each image is calculated, using the Mahalanobis distance.

Hierarchical k-means (HKM) was the first approximate method for fast and
scalable construction of a visual vocabulary [6]. Data points are clustered by
k = 2 or k = 10 using k-means clustering and then k-means is applied to each
one of the newly generated clusters, using the same number of clusters k. After
n steps (levels), the result is kn clusters.



Hierarchical k-means has been outperformed by approximate k-means [10]
which allows for building scalable visual vocabularies. The exact k-means algo-
rithm involves the computation of the distances between all points and cluster
centers. In contrast, this computation is replaced by the computation of the
distances between points and the approximately nearest cluster centers. The ap-
proximate nearest neighbor search is performed using 8 randomized k-d trees.
The efficiency of k-means increases as the number of nearest centers increases in
the distance computation, but the algorithm becomes slower.

Scalability issues are often tackled using distributed processing and more
than 100 processing nodes [8]. The performance of offline indexing have been
improved, on a semantic level, by adding semantic attributes on the set of visual
descriptors [5].

Contrary to the aforementioned approaches we present a novel method for
creating visual vocabularies, in which we exploit the exponential distribution of
SIFT descriptors in order to provide a faster and more efficient visual vocabulary
construction. After the extraction of SIFT descriptors, we fit all SIFT values to
the exponential distribution. From the estimated parameter λ of the exponen-
tial distribution, we construct a k-d tree with split value the third quartile of
the exponential distribution, namely “k-d tree with skewed split”. Our method
is comparable to the construction of visual vocabularies using approximate k-
means [10], but in each k-d tree the split value is neither the median nor the
mean.

3 The exponential distribution of SIFT descriptors

The SIFT descriptors has been proved very reliable for the representation of
an image [4]. For SIFT extraction we used the LIP-VIREO toolkit1, where key-
points are detected using the Fast Hessian detector. After the extraction of SIFT
features, we examine each one of the 128 coordinates separately as a sample of
SIFT values, in order to test their fit to the exponential distribution.

For our experiments we have used the following image collections:

1. The Pascal voc 2007 dataset2, containing 9,962 images (Pascal 10K) and its
test set (Pascal 5K), containing 4952 images.

2. The Flickr logos dataset3, containing 8240 images.
3. The Oxford buildings dataset4 (Oxford 5K) has 5062 images.
4. The Caltech 101 dataset5 has pictures of objects belonging to 101 categories,

from which we get the category “airplanes” for the “Caltech 0.8K” dataset
(800 images) and the categories airplanes, barrel, binocular, bonsai, brain,
buddha, butterfly, camera, car side, cellphone, chair, crab, faces, kangaroo,

1 http://pami.xmu.edu.cn/ wlzhao/lip-vireo.htm
2 http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html
3 http://www.multimedia-computing.de/flickrlogos/
4 http://www.robots.ox.ac.uk/ vgg/data/oxbuildings/
5 http://www.vision.caltech.edu/Image Datasets/Caltech101/



lamp, rhino, saxophone, scissors, snoopy, umbrella, water lilly for the “Cal-
tech 2.5K” dataset (2,516 images).

5. The WANG dataset6 has 1K images, belonging to 10 categories.

We test whether the values of the aforementioned SIFT descriptors are expo-
nentially distributed. Let x ∈ [0, xmax] be the SIFT values for some coordinate
j = 1, 2, . . . , 128, and X be the random variable that generates the sample of
SIFT values. We shall show that there is strong evidence that the cumulative
density function fits well (for some parameter λ) to the form:

Prob(X ≤ x) = 1− e−λx (1)

In order to test the validity of Eq. (1) we sort the SIFT values x so as to
compute Prob(X > x), i.e. the fraction of them that are greater than x, for all
values of x. We also define y = Prob(X > x) in order to test if the logarithm
ln y fits to a straight line:

ln y = α+ βx (2)
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Fig. 1: The linear fit of the logarithm lnProb(X > x)

Table 1: Formulation of the hypothesis tests
Hypothesis for α for β

Null H0 : α = 0 H0 : β = 0

Alternative H1 : α 6= 0 H1 : β 6= 0

In all datasets examined (Table 2) we formulated two hypothesis tests, as
shown in Table 1. The hypothesis H0 : α = 0 cannot be rejected for all levels

6 http://wang.ist.psu.edu/docs/related/



of significance because the average p-value is greater than 1%. However, the
hypothesis H0 : β = 0, under the alternative H1 : β 6= 0, is rejected for all levels
of significance because the average p-value is less than 10−100. We conclude that
α = 0 and β 6= 0 and Eq. (2) is written:

y = e−λx, λ = −β (3)

Eq. (1) follows from the fact that Prob(X > x) + Prob(X ≤ x) = 1 and
y = Prob(X > x). The linear fit model is also evaluated by the R-squared
statistic, known also as coefficient of determination [11]. We average over the
128 coordinates of the SIFT descriptors in order to have the average R-squared
statistic, which is reported in Table 2 for all datasets examined. For illustrative
purposes we demonstrate, in Figure 1, the linear fit of the logarithm lnProb(X >
x) of selected coordinates for three datasets.

Table 2: The examined datasets and their corresponding fit to the exponential
distribution. The average R-squared statistic is very close to 1 in all cases exam-
ined. Even for datasets which are very small, such as 800 airplane images from
the Caltech dataset, the SIFT descriptors fit to the exponential distribution very
well.

Dataset SIFT values per
coordinate

estimated
parameter λ

R-squared ± std

Pascal 10K 5,884,677 0.0545 0.9914 ± 0.0066

Flickr logos 8.2K 5,803,263 0.0492 0.9927 ± 0.0052

Oxford 5K 3,678,453 0.0592 0.9883 ± 0.0055

Pascal 5K 2,940,834 0.0536 0.9893 ± 0.0094

Caltech 2.5K 769,546 0.0492 0.9877 ± 0.0101

WANG 1K 505,834 0.0632 0.9789 ± 0.0096

Caltech 0.8K 174,091 0.0567 0.9461 ± 0.0402

Using the exponential distribution of SIFT descriptors we shall provide, a
faster and more efficient visual vocabulary construction, in the special case of
SIFT descriptors.

4 Visual vocabulary construction using k-d trees with
skewed split

In this chapter we introduce a novel methodology for creating visual vocabular-
ies by exploiting the exponential distribution of SIFT descriptors. In order to
construct the vocabulary we apply the well established framework for extracting
SIFT descriptors [4]. Initially, the keypoints are detected and SIFT descriptors
are extracted, which are clustered in order to provide a set of visual words (the
visual vocabulary). The clustering technique is usually approximate k-means due



to the fact that exact k-means is not applicable for large datasets with billions
of descriptors. A general framework is presented in Figure 2, where k-means
clustering of the SIFT descriptors is replaced by approximate k-means methods.
The construction of the visual vocabulary results to the image representation
using tf-idf scores, i.e. weighted term frequencies. The similarity between the
query and each image is calculated, using the Euclidian distance.

The main novelty of our approach is on the approximate k-means part of 2.
We cluster the extracted SIFT descriptors using the conjunction of 8 k-d trees
with skewed split, in order to improve the construction of the visual vocabulary.

In the following, we first discuss the construction of one single k-d tree with
skewed split and, secondly, we describe the approximate clustering method using
the conjunction of 8 k-d trees with skewed split.
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Fig. 2: Image retrieval using SIFT descriptors. After the SIFT extraction, ap-
proximate k-means methods may be used alternatively to k-means clustering for
the construction of the visual vocabulary.

4.1 Construction of k-d trees with skewed split

A k-d tree selects the coordinate with maximum variance and splits the data
at the median or the mean value. A randomized k-d tree picks the coordinate
to split, at random, from a set of coordinates with the highest variance and the
split value smedian is chosen to be a value close to the median. The conjunction
of 8 randomized k-d trees has been proved very efficient for approximate nearest
neighbor search and approximate k-means clustering, for the construction of
visual vocabularies [10].

Motivated by the lack of symmetry of the exponential distribution of SIFT
values, we propose an alternative split value for the construction of a k-d tree



i.e. sskewed = ln(4)/λ, which is the 3rd quartile of the exponential distribution,
Eq. (1), with parameter λ. The mean value of the exponential distribution is
smean = 1/λ and the median is ln(2)/λ.

In order to make the split more efficient, we need to take into account the
mutual distances. To that end, we perform one simple k-means by k = 2 clusters,
which results to two centers c1, c2. The split value, as obtained by k-means, is
the border of the two clusters, i.e. skmeans = (c1 + c2)/2. Given a sample of
1K random numbers u = {u1, u2, . . . , u1000} from the uniform distribution we
generate a sample of 1K exponentially distributed points, using the transforma-
tion − ln(u)/λ [2]. After several simulations of exponentially generated datasets,
we conclude that skmeans is much closer to sskewed rather than to smean or
smedian. Our statement is verified in Figure 3, where the candidate split values
smean, smedian, sskewed, skmeans are compared.
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Fig. 3: The projection of 1K exponentially generated points onto the 2 dimen-
sional plane. Choosing the coordinate 1 to split, we demonstrate the median (red
line), the mean (green line), the 3rd quartile (black line) and the value skmeans
(blue line) as provided by a simple k-means algorithm on the coordinate 1, by
k = 2 clusters. We observe that it is hard to distinguish the 3rd quartile (black
line) from the value skmeans (blue line), which we have chosen to be the split
value.

We note that we tested the correlation of all pairs of coordinates and we did
not observe any high correlation. The largest observed square of the Pearson
correlation coefficient is 0.75, which is far from the values 0.90-0.99.



Algorithm 1: k-d tree with skewed split

Input: Number of generations n < 128, sskewed = ln(4)/λ
Output: 2n leaves
1: Sort the 128 coordinates in decreasing variance in an index set S
2: for i = 1 to n do
3: Choose the coordinate with the i-th highest variance S[i] and split at s
4: end for

Algorithm 1 shows the construction of a k-d tree in four steps. The parameter
λ is computed by Eq. (3), as λ = −β, where the maximum likelihood estimate
for β, for any 2-dimensional set of points (xi, yi), i = 1, 2, . . . , N , is [1, 11]:

β =

∑N
i=1 xiyi −

1
N (

∑N
i=1 xi)(

∑N
i=1 yi)∑N

i=1 x
2
i − 1

N (
∑N
i=1 xi)

2
(4)

There are two main reasons that our tree is constructed faster than a k-d
tree. Firstly, the variance of each coordinate is computed only once, because we
sequentially split the dataset without re-calculating the variance. The variance of
each coordinate is initially computed and all coordinates are sorted in decreasing
variance. Starting from the coordinate with the largest variance, we split the
dataset at the split value, into two leaves. For each newly generated leaf, we
pick the coordinate with the second largest variance to split. The split process
is repeated for all newly generated leaves, until the desired number of leaves is
generated. The overall process involves the computation of all variances once for
each coordinate and uses them at each step, in order to choose the coordinate to
split. Secondly, the split value is fixed for all new splits and is not computed as
a function of the dataset. In case a new split results to an empty new node, we
set the split value to be the median, which occurs rarely. For k-d trees with 2k

leaves, it never occurred for k < 12. As the number of SIFT descriptors increase,
it is more unlikely to get an empty new node. In all case examined, even for k-d
trees with 216 leaves, the split value is set to be the median for the 3% of the
newly generated leaves.

4.2 Clustering using a forest of 8 k-d trees with skewed split

In the approximate nearest neighbors search, points close to the boarder of
a leaf are likely to be assigned to incorrect clusters. Philbin et al. [10] used
a conjunction of 8 randomized k-d trees to overcome this issue and expand
the search area. In contrast, we propose the conjunction of 8 k-d trees with
skewed split, tuning the split value s, as shown in Table 3, which results to an
overlapping partition of the dataset. The overlapping regions of this partition
define the search area of each point, in order to be assigned to its closest center.
An illustrative example of overlapping regions is shown in Figure 4.

The overlapping regions defined by the conjunction of 8 k-d trees with skewed
split are used for clustering. For each point, we use only one search for the
closest center, within each overlapping region. The number of overlapping regions



Table 3: Tuning the split value s. The 3rd tree has split value the 3rd quartile
and the 8th tree has split value the median.

Tree ID split value s Tree ID split value s

1 − ln(0.15)/λ 5 − ln(0.35)/λ

2 − ln(0.20)/λ 6 − ln(0.40)/λ

3 − ln(0.25)/λ 7 − ln(0.45)/λ

4 − ln(0.30)/λ 8 − ln(0.50)/λ

determines the number of clusters because after n generations, 2n leaves are
created. Each leaf determines one region which is expanded by a collection of 8
trees with (skewed) split values close to the third quartile. Two points in each
expanded region of 8 leaves are considered to be approximately close to each
other and, in the case of k-means clustering, the search for the closest center is
restricted to each region. Therefore, our overall clustering method coincides with
one iteration of the approximate k-means algorithm [10], in terms of time, and
the computational cost of our approach is O(N logK), since we search over the
(approximate) closest centers only once, in order to assign points to clusters.

In the following section, we test whether our significantly faster method pro-
vides also visual vocabularies of high quality.

Fig. 4: Two cells of the overlapping partition. Each tree leaf is illustrated by a
circle. The union of 8 blue leaves is not disjoint with the union of the 8 red
leaves.

5 Application to Image Retrieval

In order to evaluate our method we perform image retrieval experiments with the
datasets Caltech 2.5K and the WANG 1K (Table 2). Since the best performing
methods for fast construction of visual vocabularies are based on approximate
k-means clustering and k-d trees, we create a visual vocabulary based on ap-
proximate clustering and k-d trees with skewed split.



We build one visual vocabulary using the conjunction of 8 randomized k-d
trees as in [10] and another one visual vocabulary using the conjunction of 8 k-d
trees with skewed-split. For the approximate k-means clustering of [10], we allow
20 iterations and the same number of nearest neighbors to search.

After the construction of each visual vocabulary, the tf-idf scores are com-
puted [12]:

tdidfij =
nid
nd

log
D

ni

where nid is the number of occurrences of word i in document d, nd is the number
of words in document d, ni is the number of occurrences of word i in the whole
database and D is the total number of documents in the database.

We evaluate our method on 2 datasets of Table 2, namely the Caltech 2.5K
and the WANG 1K. The 21 query images of the Caltech dataset are demon-
strated in Figure 5 and the 10 query images of the WANG dataset are demon-
strated in Figure 6. The experiments were performed on an Intel Core i7-4790K
CPU at 4.00GHz with 16GB RAM memory, using a single thread. For the sta-
tistical analysis of SIFT descriptors and the construction of k-d trees (with and
without skewed-splits) we used the R programming language7.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

(k) (l) (m) (n) (o) (p) (q) (r) (s) (t) (u)

Fig. 5: The query images used for evaluation from the Caltech dataset

For each query image, we compute the average precision, defined as the area
under the precision-recall curve. Averaging for all queries, we obtain the mean
Average Precision (mAP) for each visual vocabulary. In Table 4 we present the
results in two selected datasets of Table 2, with different numbers of clusters,
tuning the number of visual words in 2n, n ∈ {10, 13, 14, 15, 16}.

The reported mAP of the WANG dataset for 1024 clusters is higher in the
baseline method. In all other cases we outperform the baseline method, not only
in terms of speed, but also in terms of the mean Average Precision. As the
number of SIFT descriptors and clusters increase, we observe that our method

7 https://www.r-project.org/
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Fig. 6: The query images used for evaluation from the WANG dataset

Table 4: The mean Average Precision for two datasets of Table 1 for several
number of leaves in the conjunction of 8 trees.

mAP Caltech WANG

clusters without skewed split with skewed split without skewed split with skewed split

1024 0.1100 0.1167 0.2061 0.1562

8192 0.0812 0.1168 0.1405 0.1457

16384 0.0769 0.1009 0.1382 0.1457

32768 0.0733 0.0932 0.1317 0.1389

65536 0.0731 0.0935 0.1314 0.1378

performs better than the baseline approach, due to the statistical approach we
have adopted. For relatively small datasets, such as the WANG dataset, and low
levels of the k-d trees, we expect that the statistical laws become weak.

6 Conclusion

In this paper we present strong evidence that SIFT descriptors are exponentially
distributed. Using the highly skewed distribution of SIFT values, we proposed
an alternative split value for the construction of k-d trees. Using the BoW model
for image representation, we introduced a novel method for the construction of
visual vocabularies. Our tree construction of k-d trees with skewed split and
the proposed clustering method are significantly faster than the corresponding
baseline method. However, there are some limitations, which need to be consid-
ered, for example the fact that the number of visual words cannot be greater
than 2128. This is a very large number (greater than 1038) and cannot easily be
reached. The application of our model to the image retrieval task has shown that
we obtain slightly better mAP than the baseline method, in most cases, but at
a small percentage of its computational cost. Even for datasets which are very
small, the SIFT descriptors fit to the exponential distribution very well and the
mAP is not reduced, when compared to the baseline method.



In the future, we plan to test the statistical properties of other visual features
beyond SIFT descriptors. The distribution of the visual features is crucial for
fast construction of visual vocabularies.
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