
Early and Late Fusion of Multiple Modalities in
Sentinel Imagery and Social Media Retrieval

Wei Yao1, Anastasia Moumtzidou2, Corneliu Octavian Dumitru1, Stelios
Andreadis2, Ilias Gialampoukidis2, Stefanos Vrochidis2, Mihai Datcu1, and

Ioannis Kompatsiaris2

1 Remote Sensing Technology Institute, German Aerospace Center (DLR), Germany
{Wei.Yao, Corneliu.Dumitru, Mihai.Datcu}@dlr.de

2 Information Technologies Institute, Centre for Research and Technology Hellas
(CERTH), Greece {moumtzid,andreadisst,heliasgj,stefanos,ikom}@iti.gr

Abstract. Discovering potential concepts and events by analyzing Earth
Observation (EO) data may be supported by fusing other distributed
data sources such as non-EO data, for instance, in-situ citizen observa-
tions from social media. The retrieval of relevant information based on
a target query or event is critical for operational purposes, for example,
to monitor flood events in urban areas, and crop monitoring for food
security scenarios. To that end, we propose an early fusion (low-level
features) and late fusion (high-level concepts) mechanism that combines
the results of two EU-funded projects for information retrieval in Sen-
tinel imagery and social media data sources. In the early fusion part,
the model is based on active learning that effectively merges Sentinel-
1 and Sentinel-2 bands, and assists users to extract patterns. On the
other hand, the late fusion mechanism exploits the context of other geo-
referenced data such as social media retrieval, to further enrich the list
of retrieved Sentinel image patches. Quantitative and qualitative results
show the effectiveness of our proposed approach.

Keywords: Multimodal data fusion · Sentinel imagery retrieval · Social
media retrieval · Earth Observation · Big Data

1 Introduction

The number of Earth Observation (EO) data is increasing rapidly due to the
large number of space missions that were launched during the past years. More-
over, the fact that there are EO data that are freely available to the scientific
community (e.g., data from the Copernicus missions), opens up the horizons
for using them in several applications. Furthermore, the advancements in the
domain of satellite remote sensing helped in producing quick and precise land
cover maps that allowed us to identify target categories such as snow, rocks,
urban areas, forests, and lakes. We use that to capture the characteristics of the
underlying areas, and eventually exploit this information to assist in global mon-
itoring and future planning. One major challenge is the lack of training datasets
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for building well-performing models using shallow and deep learning models. To
that end, an active learning method is proposed. Active learning is a form of
supervised machine learning. The learning algorithm is able to interactively in-
terrogate a user (as an information and background knowledge source) to label
image patches with the desired outputs. The key idea behind active learning
is that a machine learning algorithm can achieve greater accuracy with fewer
training labels, if it is allowed to choose the data from which it learns. This
operation with the active learning procedure is presented in Fig. 1.

Fig. 1. The active learning concept.

The inclusion of crowdsourced geo-referenced data sources, through the re-
trieval of social media data, semantically enriches the retrieved results from
satellite image content. Twitter is a popular platform, where a set of keywords,
locations, and user accounts can be defined to formulate a query in order to ob-
tain relevant information to a concept or event. Such information is integrated
with the retrieval of satellite image patches, combining the results from remotely-
sensed images with images and text descriptions from citizen observations and
user-generated online content.

Our contribution is summarized as follows:

– Retrieve satellite images using an active learning technique

– Extend satellite image retrieval with social media posts

The paper is organised as follows. Section 2 presents relevant works in multi-
modal fusion for the two main fusion strategies. Section 3 presents our proposed
methodologies, one based on early fusion of data and the other on late fusion.
In Section 4, we describe the datasets that we have used, the settings, and also
the quantitative and qualitative results. Finally, Section 5 concludes our work.



Fusion of EO and non-EO data 3

2 Related Work

Over the years, two main strategies for fusing multimodal information have been
identified [1]. The first strategy is known as early fusion; it is realized at the fea-
ture level, where features from multiple modalities are combined into a common
feature vector, while the second strategy, known as late fusion, fuses information
at the decision level.

In our previous investigation in data fusion [13], the data representation as
Bag-of-Words has been discussed, using a clustering of various modalities and
an application of Bayesian inference for fusing clusters into image classes. In
addition, the work in [3] presents the extraction of different information modal-
ities from the same observation and fusion for enhanced classification. Recently,
within the framework of CANDELA project3, we implemented the merging of
different Sentinel-1 and Sentinel-2 bands [16]. Furthermore, during the Living
Planet 2019 Conference4, a semantic level fusion for Synthetic Aperture Radar
(SAR) images has been discussed. By exploiting the specific imaging details and
the retrievable semantic categories of TerraSAR-X and Sentinel-1 images, we ob-
tained semantically-fused image classification maps that allow us to differentiate
several coastal surface categories [6].

Active learning methods include Relevance Feedback. It supports users to
search for images of interest in a large repository. A Graphical User Interface
(GUI) allows the automatic ranking of the suggested images, which are expected
to be grouped in the class of relevance. Visually supported ranking allows en-
hancing the quality of search results after giving positive and negative exam-
ples. During the active learning process, two goals are achieved: 1) learning the
targeted image category as accurately and as exhaustively as possible, and 2)
minimising the number of iterations in the relevance feedback loop.

Active learning has important advantages when compared with Shallow Ma-
chine Learning or Deep Learning methods, as presented in Table 1.

Table 1. Comparison of different learning schemes

Key Performance Indicator Shallow ML Deep Learning Active Learning

Training data volume Medium (GB) Very high (PB) Very small (0.1KB)
Trained data volume Large (GB-TB) Very high (PB) Large (GB-TB)
No. of classes Up to 100 Up to 100 Any, user-defined
Classification accuracy Avg. 85% Avg. 90% Avg. 85%
Training speed Medium (hour) Slow (days) Fast (minutes)

However, the involvement of social media queries requires multimodal fu-
sion mechanisms that are able to combine textual, visual and spatiotemporal
information. As it is already mentioned, late fusion techniques involve fusing

3 https://www.candela-h2020.eu/
4 https://lps19.esa.int/

https://www.candela-h2020.eu/
https://lps19.esa.int/
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information at decision level. This means that each modality is initially learned
separately and then the individual results are combined in order to reach a final
common decision. Most of the late fusion methods for retrieval are in general
unsupervised techniques that use the document rank and score to calculate the
decision. For example, in [17], the authors propose a multimodal knowledge-
based technique in order to retrieve videos of a particular event in a large-scale
dataset. The authors consider several modalities including Speech Recognition
transcripts, acoustic concept indexing and visual semantic indexing, which are
fused using an event-specific fusion scheme. In [10], the authors describe a system
for retrieving medical images. The system considers textual and visual content,
separately and combined, using advanced encoding and quantisation and com-
bines the results of the modalities in a sequential order. Specifically, the textual
modality returns a list of results that is re-ranked based on the visual modality.
The work of [8] retrieves text-image pairs, where queries of the same multimodal
character are considered. Recently, the EOPEN project5 has demonstrated the
fusion of multiple modalities in the context of EO and non-EO data [7]. Contrary
to these approaches, we use a tensor-based late fusion mechanism that aims to
complement satellite image search with social media data for related concepts,
such as food, flood, city, etc.

3 Methodology

3.1 Early Fusion in satellite image retrieval

The Early Data Fusion aims at a better understanding of a scene from observa-
tions with multiple different sensors. In the particular case of the data fusion in
CANDELA, the objective is to obtain better classification of the Earth surface
structures or objects using Sentinel-1 (S-1) and Sentinel-2 (S-2) observations.
The design of the data fusion methods shall exploit the characteristics of the
different sensing modalities. Table 2 is summarizing the main aspects of the
complementarity of Sentinel-1 and Sentinel-2 observations.

Table 2. The complementarity between Sentinel-1 and Sentinel-2.

Criteria Sentinel-1 SAR Sentinel-2 multispectral

Sensor type Active Passive
EM spectrum C band Visible to IR 13 bands
Operation Day/Night Day
Dependence on cloud cover No Yes
Vegetation signatures Low sensitivity Good diversity of classes
Ocean/sea Waves and currents Water colour
In-land waters Low backscatter Diversity of spectral signatures, water colour
Urban constructions Strong signatures Variable depending on may parameters
Soil Moisture and roughness Spectral signatures (colour)
Relief Strong dependence Moderate dependence
Snow/ice Classification based on EM properties Reduced separability, confusion with clouds

5 https://eopen-project.eu/

https://eopen-project.eu/
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Based on these assets, the data fusion was designed using three important
paradigms. Firstly, the fusion is performed at the level of image patch features,
secondly, the classification is performed by an active machine learning paradigm,
and finally, the classifier results are semantic annotations recorded in a database.

The early fusion is performed at image feature level, so as to combine the
very particular signatures of the scene for the two observations modalities, multi-
spectral and SAR. The feature extracted from Sentinel-1 is the Adapted We-
ber descriptor [4] since it has the property to characterize SAR signatures by
minimising the noise effect of speckle. The feature extracted from Sentinel-2 is
the multi-spectral histogram, since it contains the physical information of the
Sentinel-2 signatures. The two features are concatenated and become the fused
descriptor of the Earth cover observed by the two sensors. The classifier is chosen
to be an Active Machine Learning [2] based on Support Vector Machine (SVM),
allowing the user to select the training samples in the appropriate manner to
avoid the contradiction which may occur from the different sensor signatures
behaviour.

The result of the classification is recorded into a database as semantic an-
notation, thus enabling further analyses and the export of the information for
integration or a next level of fusion with non-EO data. The input is the train-
ing data sets selected interactively from the GUI. The training dataset refers
to a list of images marked as positive or negative examples. The output is the
verification of the Active Learning loop sent to the GUI and the semantic anno-
tation written into the DBMS (Database Management System) catalogue. Fig.
2 depicts the software architecture of the Data Fusion module in the back end
(i.e., the platform) and in the front end (i.e., the user machine). There are three
layers which define a complete process: the platform layer as back-end, the user
machine layer as front-end, and the transfer layer via an Internet connection.

In the platform layer, Sentinel-1 and Sentinel-2 products are accessed by us-
ing the symbolic CreoDIAS6 links which are provided in the platform. Users
start the Data Model Generation for Data Fusion Docker container and it runs
for one Sentinel-1 product and one Sentinel-2 product simultaneously. As a pre-
processing step, the two products should be geometrically co-registered. The
results (extracted metadata, cropped image patches, and extracted features for
the patches) are ingested into the MonetDB7 database “candela” on the plat-
form. The generated quick-look images are published on the platform to be
downloaded by local users via a Representational state transfer (RESTful) ser-
vice. The Database Management System (DBMS) provides high-speed storage
for real time interactive operation in active learning and data fusion functionality
whose performance (both processing and retrieval) requires a database-close im-
plementation. This is the actionable information of the Data Fusion component.
The framework (Fig. 3) provides the following front-end functionalities to the
user: Image Search and Semantic Annotation (ISSA): image mining, query
by example, retrieval and adding of semantic annotation to EO image products;

6 https://creodias.eu/
7 https://www.monetdb.org/

https://creodias.eu/
https://www.monetdb.org/
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Fig. 2. Architecture of the data fusion module on the platform and front-end.

Multi-knowledge and Query (M-KQ): multimodal queries based on selected
product metadata, image features, and semantic labels; and System Valida-
tion: supports the evaluation of the retrieval and classification performance.

The Image Search and Semantic Annotation module is interactive; it reads
and writes from and to the database, while the other modules read the infor-
mation from the database. Data Model Generation adds Data Fusion specific
information and descriptors (image features) to the EO products processed dur-
ing ingestion. The Data Fusion module evolved from EOLib8.

In support of the semantic annotations, a hierarchical two-level semantic
catalogue has already been ingested with the “candela” database, which allows
users to select the appropriate label during semantic annotation by using the
active learning. In the case of Copernicus (e.g., S-1 and S-2), level 1 labels are
the most general categories: Agriculture, Bare Ground, Forest, Transportation,
Urban Area, and Water Bodies; while level 2 consists of more detailed labels,
concerning each general level, respectively. The general and fine levels of labels
allow users to define the processed EO products by choosing suitable labels.

In addition, because of the diversity of structures in an image, after choosing
a specific general-level label, an extra user-defined label annotation function is
allowed, so that new land cover or land use cases can be described according to
the user’s own definition. This is different from a fixed classification system, and
particularly useful in the cases of evolving land cover patterns, e.g., floods.

8 http://wiki.services.eoportal.org/tiki-index.php?page=EOLib

http://wiki.services.eoportal.org/tiki-index.php?page=EOLib
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Fig. 3. Logical view of Data Fusion and Mining Module.

3.2 Late Fusion Approach to retrieve relevant social media content

The late fusion approach retrieves social media posts that are similar to a given
tweet by considering its different modalities, i.e.: textual information, visual fea-
tures and concepts, and spatiotemporal information. The late fusion mechanism
consists of the following phases: 1) description of the multimodal query q using
a set of modalities; 2) question the indexing schemes that are used to allow fast
and efficient retrieval for each modality in order to get ranked lists of retrieved
items along with the similarity scores of the query tweet q to the available pool
of tweets — these lists are used for creating a 4D tensor; and 3) two-step fu-
sion procedure that involves initially a bi-modal fusion of the retrieved results
for each 2D surface of the created tensor and then merging of the produced
rankings to get the final list of retrieved tweets (Fig. 4).

Fig. 4. Late fusion framework for multimodal retrieval of geo-referenced tweets.

The proposed late fusion approach fuses the output of four modalities. The
algorithm comprises the following steps:
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1. Retrieval of N results per modality, which eventually leads to four such lists
from unimodal searches.

2. Creation of 4-order L tensor by considering the aforementioned lists. The
dimension of the binary tensor L is (l1, l2, l4, l4). The value of the single
elements results from the following rule:

L(...,ri,...,rk,...) =


1, if the same element is ordered as ri in list li,

and ordered as rk in list lk

0, otherwise

(1)

3. Creation of one 2D tensor surface for each pair of modalities (i, k), i ≤ k.
4. For each 2D tensor surface, get the list of tweets that are jointly ranked

higher by minimising the position in which L(i, k) = 1 (details in [7]).
5. Merging of the rankings to obtain the final list of tweet IDs.

Text similarity between two or more texts is the procedure of computing the
similarity in meanings between them. Although there are several approaches that
can be used for text similarity that involve text representation as a first step, the
one considered in this work is an off-the-shelf text search engine, i.e., the Apache
Lucene9. Apache Lucene is a full-text search engine that can be used for any
application that requires full-text indexing and searching capability. It is able to
achieve fast search responses, because it uses a technique known as inverted index
and avoids searching the text directly. The representation of the text modality
also considers the state-of-art algorithm Bidirectional Encoder Representation
from Transformers (BERT) [5], which involves an attention mechanism to learn
contextual relations between words in a text. BERT is used to represent each
tweet text into a deep representation that allows similarity search.

As far as visual information is concerned, both visual features and visual
concepts are taken into consideration. The framework used in both cases, i.e., a
deep convolutional neural network (DCNN), is the same, but the vectors used are
taken from different layers of the network. Specifically, we used the fine-tuned
22-layer GoogleNet network [14] that was trained on the 345 SIN TRECVID
concepts. Regarding the visual features, they are DCNN-based descriptors and
are the output of the last pooling layer of the fine-tuned GoogleNet architecture
previously described. The dimension of the last pooling layer is 1024 and it is
used as global image representation. The selection of that layer was based on the
results of the evaluation realised in terms of time and quality within the VERGE
system [12] that has participated in the Video Browser Showdown in 2018. The
visual concept representation is a concatenated single vector with length equal
to 345, as the output of the aforementioned GoogleNet network.

Fast retrieval of similar visual and textual content is achieved by construct-
ing an inverted file and combining it with Asymmetric Distance Computation
[9]. Then, the k-nearest neighbours are computed between the query image and
the collection. Temporal metadata also accompany the query tweet q and ex-
ist as a ISODate datatype inside the MongoBD10 used for storing the tweets

9 https://lucene.apache.org/
10 https://www.mongodb.com/

https://lucene.apache.org/
https://www.mongodb.com/
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information. The inherent MongoDB sorting functions allow the retrieval of
a list of items which are temporally close to the query tweet. Regarding the
locations mentioned in a tweet, we extract the corresponding named entities
using the BiLSTM-CNNs-CRF[11] model. The bidirectional Long-Short-Term-
Memory part is responsible for encoding, a DCNN for extracting character level
features, and a Conditional Random Field for decoding.

4 Experiments

4.1 Datasets description

For the demonstration and validation of the Data Fusion mechanism in satellite
image search we use 33 Sentinel-1 and Sentinel-2 images. The average image size
in pixels is 26,400 × 16,600 and 10,980 × 10,980 for Sentinel-1 and Sentinel-
2, respectively. These satellite images cover an area of 350,000 km2. One band
has been considered from Sentinel-1 and four bands at 10 meter resolution from
Sentinel-2 images. The patch size is 120 × 120 pixels and one level is regarded.
For the total number of 340,587 patches, the 7,478 have been annotated into
several semantic labels (see Fig. 7), e.g., lakes, mixed forests, mixed urban areas,
stubble etc.

Twitter is a suitable social media platform for testing fusion approaches since
each tweet comprises several modalities. Specifically, a tweet contains a short text
no longer that 140 characters that may contain non-standard terms, sometimes
an image that is semantically related to the text, the date and time the tweet was
posted, and any named entities of the type “location” that can be extracted from
the text. Three datasets were used that include publicly available tweets retrieved
via the Twitter Streaming API11. The datasets were created by collecting tweets
that included the words “alluvione” (i.e., flood in Italian), “food”, and “lumi”
(i.e., snow in Finnish). The total numbers of tweets selected in a period of three
years for the three datasets are 1,000,383 for floods (IT), 120,666 for food (EN)
and 66,175 for snow (FI), respectively. An example collected tweet, that can also
be used as a query, is shown in Fig. 5.

Fig. 5. Query tweet in English language that is related to “food”.

11 https://developer.twitter.com/en/docs/twitter-api

https://developer.twitter.com/en/docs/twitter-api
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4.2 Results

The results and examples are presented in Table 3. We observe that the overall
classification accuracy is up to 90%, even for a very small training data set and
maximum of three iterations during the active learning stage. Fig. 6 and 7 show a
visual demonstration of the early fusion result. Five classes are discovered in the
scenes of Munich: lakes, mixed forest, mixed urban areas, stubble, and grassland.
The S-1 and S-2 images are the inputs for the Data Mining module to be fused,
while CORINE land cover 2018 is provided as a visual ground truth12. Focusing
on the urban area, data fusion gets better results, because the multi-spectral
signal together with the radar signal, which generates strong backscatterers in
the man-made construction areas, helps to distinguish the urban signatures.

Fig. 6. Munich, Germany as a data fusion example. Left: S-1 image, Middle: S-2 image,
Right: CORINE land cover 2018.

Fig. 7. Munich, Germany as a data fusion result. Left: fusion results combining S-1
and S-2, Middle: classification results of S-1, Right: classification results of S-2.

12 http://clc.gios.gov.pl/images/clc_ryciny/clc_classes.png

http://clc.gios.gov.pl/images/clc_ryciny/clc_classes.png
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Table 3. Examples of the use of the Data Fusion and overall performances.

Sentinel-1 Sentinel-2 Label Accuracy

Mixed Forest 90%

Beach 80%

Mixed Urban 90%

Agriculture 70%

Land 80%

Hill 65%

Beach 90%

Mixed Urban 90%

Beach 90%

Low Density Urban 80%

Forest Spots 80%
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As far as social media retrieval is concerned, we manually annotate the top-
10 retrieved results for each method and then calculate the average precision for
each query and mean average precision (mAP) for three queries for each method.
Table 4 contains the average precision scores for the different similarity methods
for each query and the mAP for each method.

We conclude that text modality doesn’t perform well when it isn’t fused with
any other modality. However, in case of tweets only text and temporal informa-
tion exist by default, so it is a very important modality to consider. Moreover,
time modality has better mAP compared to text, which can be explained since
we consider only the top-10 results. However, it is expected that if we retrieve
the top-K results, this score (mAP) will fall for large values of K. Finally, vi-
sual features perform very well, since the modality searches for visually similar
results using pre-trained models in larger image collections, but they cannot be
used disregarding text.

Fig. 5 is the example Twitter post query, while Fig. 8 and Fig. 9 provide the
top-10 retrieved list of tweets. These lists can be compared to the results of the
tensor-based multimodal approach in Fig. 10.

Fig. 8. top-10 retrieved results with unimodal textual and temporal modalities.

5 Conclusion

Active learning with a very small number of training samples allows detailed
verification. Thus, the results are trustable, avoiding the plague of training data
based biases. Another important asset is the adaptability to user conjectures.
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Fig. 9. top-10 retrieved results with unimodal visual feature & concept search.

Table 4. Average precision P@10 and mean Average Precision (mAP) of unimodal
and multimodal search.

Method Flood, IT (P@10) Food, EN (P@10) Snow, FI (P@10) mAP

Text 1.0 1.0 0.586 0.862
Spatiotemporal 0.839 0.867 1.0 0.902
Visual Features 0.878 1.0 1.0 0.959
Visual Concepts 0.638 1.0 1.0 0.879

Multimodal fusion 0.906 1.0 1.0 0.969

The EO image semantics are very different from other definitions in geoscience,
as for example cartography. An EO image is capturing the actual reality on
ground; a user can discover and understand it freely, and extract its best mean-
ing, thus enriching the EO semantic catalogue. With CANDELA platform as
back-end solution to support the query and ingestion of information into the re-
mote database “candela” the early data fusion has been demonstrated on various
image pairs. The validation results show the fused results generate more com-
plete classification maps and performs very well even in challenging concepts,
such as “beach”. The necessity to design and develop multimodal solutions is
apparent also in combining EO with non-EO data, i.e. Twitter content in our
case. Our presented method is able to effectively combine textual and visual
information of tweets with other associated metadata, so as to deliver a search
engine that can serve as an extension to satellite image search engines. In the
future, further integration and orchestration of such EO and non-EO technolo-
gies is expected, with additional evaluation that also involves user satisfaction
in the context of large-scale exercises in EU-funded projects.
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Fig. 10. top-10 retrieved results with multimodal fusion.
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