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ABSTRACT
This work examines violence detection in video scenes of crowds
and proposes a crowd violence detection framework based on a
3D convolutional deep learning architecture, the 3D-ResNet model
with 50 layers. The proposed framework is evaluated on the Vio-
lent Flows dataset against several state-of-the-art approaches and
achieves higher accuracy values in almost all occasions, while also
performing the violence detection activities in (near) real-time.

KEYWORDS
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1 INTRODUCTION
Monitoring visual streams from events, such as football matches
and protests, for automatically detecting signs of violence is par-
ticularly valuable for law enforcement and security practitioners.
Recent studies have focused on the detection of violence or fighting
among multiple individuals in a crowd, with particular emphasis
on violent scenes that cannot be effectively detected by the security
personnel in the field. Towards this objective, the latest advances in
deep learning have been exploited, whereby the temporal analysis
of visual information is almost always performed using Convolu-
tional Neural Networks (CNNs) [4], Recurrent Neural Networks
(RNNs) [8], or 3D Convolutional Neural Networks (3D-CNNs) [22].

In this context, this work proposes a crowd violence detection
framework that aims at analysing crowd-centered video footage
and detecting scenes that contain indications of violence. Initially,
the input streams (received from CCTVs and surveillance cameras)
are encoded and, subsequently, specific key-frames are extracted
and processed in order for the framework to provide the confidence
score of the violence prediction (Figure 1). In particular, the pro-
posed crowd analysis framework consists of four sub-modules: (i)
the sampler which is responsible for balancing the information that
should be processed by the neural network, (ii) the feature extractor
that is exploited for encoding the frames to visual features, (iii) the
main neural network that is built during the training phase and
used during testing to evaluate in (near) real-time the presence of

Figure 1: Crowd analysis workflow

violence, and (iv) a graphical user interface for demonstrating the
monitored streams and the prediction provided by the framework.

The proposed framework for detecting violent scenes of crowd-
centered video footages relies on 3D-CNNs, and in particular on
the 3D-ResNet [9]. In addition, the model was evaluated on the
Violent Flows dataset [10]. To the best of our knowledge, this is
the first approach of applying a 3D-ResNet architecture for crowd
violence detection, and it is only one of the very few deep learning
approaches applied to this problem. It should also be highlighted
that several deep learning approaches have been applied to violence
detection (e.g., [6, 21]), but only a few (namely [8] and [22]) to crowd
violence detection. Additional contributions of this work include the
comprehensive experimental evaluation and extensive comparison
to the state-of-the-art, the efficiency of the proposed framework
that can process visual streams with no more than 1 second of delay,
and a built-in demo to visualise the predictions of our framework.

2 RELATEDWORK
This section reviews related work in a detailed manner as several
state-of-the-art methods are used as baselines in our experiments.

Methods based on hand-crafted features and on trajectory anal-
ysis were the first to be employed for the detection of violence in
video scenes. In particular, Datta et al. [3] proposed a trajectory
motion-based approach that takes into account the limb orientation



of each person. Similarly, Nguyen et al. [18] used a hierarchical Hid-
den Markov model to enhance violence recognition, while [25, 29]
took into account the motion modality of the SIFT features to gen-
erate robust descriptors. Other approaches incorporate additional
modalities, e.g., audio [15], in order to improve violence detection.

Hassner et al. [10] proposed a framework based on the optical
flow information; specifically, they proposed Violent Flow (ViF)
descriptors followed by Support Vector Machines (SVMs), while
Mabrouk et al. [14] generated a spatio-temporal feature extrac-
tor based on optical flow features. Zhou et al. [31] generated low
level descriptors by extracting features from regions characterised
by higher values of optical flow. Furthermore, Huang et al. [11]
performed violent crowd behaviour analysis by considering only
the statistical properties of the optical flow field in video data and
performed classification using SVMs. Zhang et al. [30] presented
a violence detection framework from surveillance video streams
based on a Gaussian model of optical flow; they extracted violence
optical flow vectors and also used SVMs for the classification. Gao
et al. [7] proposed an oriented ViF descriptor that utilises the orien-
tation of the optical flow information, which was not considered by
the ViF. Recently, Mahmoodi et al. [16] proposed a method that com-
putes the optical flow between sequential frames and compares the
magnitude and orientation of each pixel in each frame to the global
optical flow to obtain the changes in orientation and magnitude.

Works such as [1, 23, 27, 28], on the other hand, proposed algo-
rithms that learnt discriminative dictionaries for semi-supervised
classification. Bilinski et al. [2] reformulated the Improved Fisher
Vectors in order to increase the accuracy of and speed up violence
recognition. Yeffet et al. [26] proposed a fast method for detecting
actions by encoding every pixel in every frame as a short string of
ternary digits using a process which compares each frame to the pre-
vious and to the next frame. Laptev et al. [12] and Mohammadi et al.
[17] took into account spatio-temporal features to, respectively, gen-
eralise spatial pyramids across time and exploit the characteristics
of substantial derivatives. Nievas et al. [19] constructed a versatile
and accurate fight detector using a local descriptors approach. Fi-
nally, Lloyd et al. [13] proposed visual descriptors referred to as
grey level co-occurrence texture measures (GLCM) to encode crowd
scenes in a spatiotemporal manner in order to detect violence.

The breakthrough of Deep Learning (DL) techniques in computer
vision has also affected the crowd violence detection methods, by
replacing the hand-crafted and trajectory analysis descriptors with
learnable features extracted directly from deep neural networks,

typically CNNs. The corresponding methods learn end-to-end rep-
resentations from the images to feature vectors, with the goal to
effectively detect violent scenes in videos. In particular, D. Xu et al.
[24] proposed a novel unsupervised deep learning framework for
anomalous event detection in complex video scenes. Sudhakaran
et al. [21] proposed a method that encodes spatiotemporally the
visual information and solves the classification problem of violence
detection based on Long Short-Term-Memory (LSTM) units, while
[8] et al. extends it using a Bidirectional Convolutional LSTM net-
work. Fenil et al. [5] proposed a violence recognition framework
applied to footage of football matches by extracting Histogram of
oriented Gradient (HoG) features and then feeding the vectors into
a bidirectional LSTM network. Finally, Ullah et al. [22] proposed a
3D-CNN architecture that first detects persons and then takes into
account only frames that contain persons for the final prediction.

3 CROWD VIOLENCE DETECTION
FRAMEWORK

The proposed framework follows the supervised learning paradigm
for crowd violence detection and employs a deep neural network
architecture, namely the 3D-ResNet, a 3D CNN-based architecture,
that was selected to fulfil the (near) real-time processing require-
ment. Based on the work of [9], we select the 3D-ResNet architec-
ture with 50 layers depth, since it achieves close to state-of-the-art
accuracy without the need for excessive computational resources.

The 3D-ResNet-50 consists of four bottleneck blocks, with each
block consisting of three convolutional layers with filter sizes 1x1x1,
3x3x3, and 1x1x1, respectively. The shortcut pass connects the top
of each block to the layer before the last activation layer of the block.
The ReLU (Rectified Linear Unit) activation function was applied,
while batch normalisation layers are also included (Figure 2). For
demonstration purposes, the 2D-ResNet architecture is depicted
with the only difference being the third dimension of the convolu-
tional layers. The input layer was set to 112x112x3 and the kernel
size of the third dimension of convolution to 16. Random cropping,
flipping, and different scales were used for data augmentation for
the model to generalise better and avoid overfitting.

First, all the frames of the videos are extracted and saved in a
valid format, so that they could be fed into the neural network. For
training our architecture, a learning rate equal to 101 was initially
selected and was subsequently decreased following the reduce-on-
plateau strategy with max patience set to 10 epochs. A negative log-
likelihood criterion was used during training, along with Stochastic

Figure 2: ResNet-50 Model. (https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33).
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Gradient Descent (SGD) for implementing back propagation with
momentum equal to 0.9. The total number of epochs and the applied
batch sizewere 200 and 1, respectively. All implementation activities
were performed using the PyTorch 1.0 [20] framework and an
NVidia RTX 2080ti GPU with 11GB memory.

The requirement for (near) real-time processing is one of the
main challenges. Asmentioned, the selected neural network is based
on 3D convolution processing. Specifically, the parallel processing
of multiple frames provides the functionality of (near) real-time pro-
cessing without generating video flickering. More specifically, our
framework processes simultaneously 16 frames per batch. Hence,
the processing of one second in a video stream requires at most two
iterations when the model is set to inference state and for videos
with frame rates lower than 30. Our implementation, using the
aforementioned configuration and hardware, generates predictions
(for batch size equal to 1) in no more than 150ms (300ms are needed
for processing 32 frames, i.e., 2 batches). It should also be noted
that the extraction of frames (which though does not take place in
the case of video streams) is not a time-consuming process and can
be covered in the 1000 - 300 = 700ms.

4 EXPERIMENTAL EVALUATION & RESULTS
This section presents the most commonly used datasets on crowd
violence detection research (Section 4.1), a performance evaluation
of the state-of-the-art algorithms using these datasets (Section 4.2),
and the performance of the proposed framework (Section 4.3).

4.1 Datasets
To evaluate the performance of relevantmethods, several evaluation
datasets have been developed for research purposes. The most
commonly used datasets are presented in Table 1; these include
Violent Flows [10], Hockey Fights [19], and Action Movies [19].

Violent Flows is a widely used dataset that was introduced in
2012 and consists of 246 videos, with half the videos depicting
violent crowd scenes and half non-violent scenes. The videos’ res-
olution is 320x240 pixels and the dataset is divided into 5 subsets,
typically used for 5-fold cross-validation. In addition the Hockey
Fights dataset was introduced a year earlier to the Violent Flows
and consists of a larger number of 1000 videos that are divided into
two categories, videos describing violent or non-violent scenes of
ice hockey matches, while their resolution varies. Finally, the Ac-
tion Movies dataset consists of 200 videos with resolution 720x576
pixels. This dataset contains violence scenes of movies, focusing on
fights between two persons; therefore. this dataset is not so relevant
to “crowd violence detection”, but to “violence detection”.

As the above discussion indicates, the Violent Flows dataset is
the one that is more relevant to real-life violence scenes and in
particular to violence crowd-centered scenes.

4.2 State-of-the-Art Performance
Table 2 presents the evaluation performance of state-of-the-art
methods for both hand-crafted (HC) and deep learning (DL) ap-
proaches on the Violent Flows dataset, as reported in the respective
publications. Specifically, the Accuracy (A) and Standard Deviation
(SD), where available, are presented; Accuracy is selected as the
main metric in recent literature as it can fairly evaluate fully bal-
anced datasets. Finally, the best performance for the mean accuracy
(over the five folds) and for the max accuracy (i.e., the best achieved
across the five folds) -when reported- is depicted in bold.

Table 2: Performance of state-of-the-art approaches.

Acronym/abbreviation Violent Flows (A+SD) Type
HNF [12] 56.52 + 0.33 HC
HNF + BoW [19] 57.05 + 0.32 HC
MoSIFT + BoW [19] 57.09 + 0.37 HC
HOG [12] 57.43 + 0.37 HC
HOG + BoW [19] 57.98 + 0.37 HC
HOF [12] 58,53 + 0.32 HC
HOF+ BoW [19] 58.71 + 0.12 HC
LTP [26] 71,53 + 0.17 HC
OViF [10] 76.80 + 3.90 HC
ViF [10] 81.30 + 0.21 HC
GMOF [30] 82.79 HC
AMDN [24] 84.72 + 0.17 DL
Substantial Derivative [17] 85.53 + 0.21 HC
DiMOLIF [14] 85.83 HC
SCOF [11] 86.37 HC
ViF+OViF [7] 88.00 + 2.45 HC
MoWLD+BoW [19] 88.16 + 0.19 HC
MoSIFT+KDE+Sparse Cod-
ing [25]

89.05 + 3.26 HC

MoWLD + Sparce Coding [29] 89.38 + 0.13 HC
PSS [1] 89.50 + 0.13 HC
SSS [23] 91.90 + 0.12 HC
Spatiotemporal Encoder [8] 92.18 + 3.29 DL
SSDLSC [27] 92.25 + 0.12 HC
MoIWlD [28] 93.19 + 0.12 HC
LHOG+LHOF+BoW [31] 94.31 + 1.65 HC
STIFV [2] 96.40 (mean) HC
Ullah et al. [22] 98.00 DL

As it can be observed, the best performance is achieved by the
method in [22] when the max accuracy is considered, the method
in [31] when the mean accuracy is considered and additionally
the standard deviation is reported, and the method in [2] when
the mean accuracy is considered, but the standard deviation is

Table 1: Commonly used datasets in violence detection research.

Dataset Name Description Year Data Specification Video Resolution
Violent Flows Videos collected from YouTube 2012 246 videos, 123 Violence/123 Non-violence 320x240 pixels, 25fps
Hockey Fights Videos showing fights in ice hockey rink 2011 1000 videos, 500 Violence/500 Non-violence Varied, ∼30fps
Action Movies One-to-one fights extracted from movies 2011 200 videos, 100 Violence/100 Non-violence 720x576 pixels, 25fps
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not reported. Both types of methods seems to achieve satisfying
performance, without though being able to conclude whether DL
or HC methods perform better given these reported results.

4.3 Experimental Results
For assessing the performance of the proposed framework, the
aforementioned Violent Flows dataset was used. The applied ex-
perimental setup follows the recent literature in order to achieve
a justifiable comparison with the methods presented in Table 2.
In particular, both training and testing processes of our neural
network-based framework were performed for the five predefined
folds in the Violent Flows dataset, using as training data the four
subsets, while using the remaining one for testing.

For each of the five folds, the accuracy and the loss during train-
ing are presented in Figures 3 and 4, respectively, which show that
our framework performs accurately in each fold. Specifically, the
accuracy stabilises after 100 epochs and gradually increases above
95% for the majority of experiments, while the loss, starting from
ln(n)=∼ 0.69, n=2 ({violence, non-violence}), decreases significantly
in the first epoch, and then gradually moves closer to 0.1.

Figure 3: Accuracy per epoch for 5-folds validation

Figure 4: Loss per epoch for 5-folds validation

Table 3 presents the performance of the proposed framework for
each of the five folds, while the mean performance and standard
deviation over these five folds are provided in the first row. The pro-
posed method outperforms state-of-the-art approaches both when
mean and max accuracy are reported. Specifically, our method re-
ports max accuracy 98.63% (Fold-2) and outperforms the reported
[22] state-of-the-art max accuracy. Furthermore, our method re-
ports mean accuracy 94.54% and is beyond all state-of-the-art meth-
ods, except the method proposed by Bilinski et al. [2] which though
do not report the standard deviations of their results.

Table 3: Performance of the proposed 3D-ResNet-50method.

Acronym/abbreviation Violent Flows (A+SD)
3D-ResNet-50 (Proposed) 94.54 + 4.13

Fold-1 90.62
Fold-2 98.63
Fold-3 91.36
Fold-4 99.31
Fold-5 92.76

Some sample results obtained from the Violence Flow dataset are
provided below, one on the training data and the other when using
the testing (unannotated) data (Figure 5). For each frame, we depict
(where available) the annotation (denoted by “Crowd Analysis”),
as Violence or Non-Violence, and the “Prediction” score for crowd
violence detection as estimated by our framework. The “Crowd
Analysis” values of “Violence” and “Non-Violence” are colourised
as red and green, respectively, whereas the “Prediction” values and
the bounding box are colourised gradually using a colour bar (red,
orange, yellow, light green, green), where the red (green) colour
indicates scenes predicted as being violent (non-violent) with a
100% confidence score. A example is depicted in the bottom row of
Figure 5 where the crowd violence in the event gradually increases.

Figure 5: Violent Flows samples: violent crowd scenes in the
training (top) and test (bottom) sets

5 CONCLUSIONS
This work presented a crowd analysis framework to detect vio-
lence in video streams. Specifically, the proposed framework relies
on a 3D-Convolutional architecture that is trained on the visual
cues associated with violent scenes. The framework was evalu-
ated against several state-of-the-art methods using the challenging
Violent Flows dataset. The experimental results showed that the
proposed framework can recognise violent crowd scenes in (near)
real-time and with higher accuracy compared to the baselines.
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