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Abstract—Following the technological advancement and the
constantly emerging assisted living applications, sensor-based ac-
tivity recognition research receives great attention. Until recently,
the majority of relevant research involved extracting knowledge
out of single modalities, however, when individual sensors perfor-
mances are not satisfactory, combining information from multiple
sensors can be of use and improve the activity recognition rate.
Early and late fusion classifier strategies are usually employed
to successfully merge multiple sensors. This paper proposes a
novel framework for combining accelerometers and gyroscopes
at decision level, in order to recognize human activity. More
specifically, we propose a weighted late fusion framework that
utilizes the detection rate of a classifier. Furthermore, we propose
the modification of an already existing class-based weighted late
fusion framework. Experimental results on a publicly available
and widely used dataset demonstrated that the combination of
accelerometer and gyroscope under the proposed frameworks
improves the classification performance.

Index Terms—human activity recognition, late fusion, multi-
modal data, accelerometers, gyroscopes

I. INTRODUCTION

Activity recognition is a quite critical task, involved in many
applications in health, technology and even security. Such
applications are not only focused on the recognition of activity
in the exact sense, such as walking and cooking, but might also
concern harmful event detection, like fall [1], motion gestures
recognition [2] and even emotion recognition [3]. Human
activity recognition problems in particular can be categorized
as vision-based, sensor-based [4] or combine both categories
of input. In summary, a human activity recognition framework
begins with the collection or extraction of raw data, like sensor
signals or video images. Especially in sensor-based activity
recognition research, initial data need to be preprocessed so as
to eliminate diversity. Preprocessing methods include filtering
and normalization. An appropriate time window is afterwards

selected in order to extract features from the preprocessed
data. Feature selection techniques can be utilized to select the
most suitable extracted features that will then enter a classifier
model so as to recognize the activities conducted [5].

Accelerometers are the sensors most broadly used since
they have proven to be very effective in recognizing activ-
ities, especially the ones with repetitive body motion [23].
Accelerometers capture the magnitude and direction of an
object in motion. However when used alone, they lack the
ability to recognize similar activities [15], therefore combining
them with other wearable or ambient sensors, improves the
performance of a system. Gyroscopes measure the angular
velocity of rotation [15] hence they detect the object’s orien-
tation [24]. They are also found in most activity recognition
studies, however they are not so often used individually.
The combination of these sensors at any level, will most
probably improve the performance of a recognition system,
since one sensor may cover for the deficiencies of the other
e.g. the rotation speed provided by gyroscopes can correct
accelerometer errors [17]. Both sensors are embedded in all
smartphones and smartwatches, which makes it easier to obtain
their sensor readings. Most devices have triaxial sensors, that
produce three component vectors of raw signals, with each
component responding to an axis of the Cartesian reference
system [22].

Numerous machine learning algorithms are employed in
activity recognition problems, which usually involve multilabel
classification. The choice is subjective and the classifier’s
performance is affected by many factors like the nature of
the activities performed, the type of data and the selected
features. However, there are algorithms found to achieve high
performance rates across many studies, like Support Vector
Machines (SVM), Naive Bayes (NB) and Decision Trees [6].



As already mentioned, the existence of multiple sensors
can lead to a better recognition rate when individual sensors’
performances are not satisfying. Combination of multiple
sensors can be achieved through fusion, early or late. Early
fusion refers to combination of features, while late fusion
refers to the combination of results. The most common early
fusion technique is concatenation of feature vectors. Some
basic late fusion strategies are a) averaging the predicted class
probabilities of multiple models and b) the majority voting,
which assigns to a case the label predicted by most of the
models used [7]. Variants of the aforementioned strategies are
the weighted averaging and weighted voting, with weights
assigned to the classifiers results according to a criterion,
which is usually the performance of the classifier [8]. Some of
the more complex late fusion techniques are bagging, boosting
and stacking [16]. Weights can be incorporated in numerous
fusion strategies usually enhancing the results of the classifiers
that perform best.

In the current study, we propose a weighted late fusion
framework, with weights based on the detection rate (DR) of
each activity. The class prediction probabilities of each sensor
are weighted with the supplementary of the corresponding
detection rate and then the weighted results of the two sensors
are combined. From empirical experimentation, the proposed
framework was found to improve the recognition rates of the
late fusion implementation. Detection rate reflects the ratio
only of the true positive (TP) findings of a classifier, thus
its value is usually smaller than other more widely used
evaluation metrics. To the best of our knowledge, the detection
rate has not been utilized in fusion applications yet, at least
in the activity recognition field. Furthermore, we suggest
modifying the class-based weighted late fusion framework
proposed in [9]. The authors in [9] used class-based weights
that reflect the performance of the classifier on the training
set, in terms of the F1-score. These weights are then adjusted
with the class probabilities obtained from the prediction on the
test set. We suggest replacing the F1-score in the calculation
of the class-based weights with the detection rate. The novelty
of this work can be summarized in the following:

1) the suggestion of a novel weighted late fusion frame-
work for the combination of accelerometers and gyro-
scopes

2) utilizing detection rates in weighted fusion
3) the modification of an existing class-based weighted

framework for late fusion

The proposed fusion schemes were evaluated on a publicly
available dataset, the HAR dataset [18]. The HAR dataset con-
sists of wearable sensors’ data that recorded 6 daily activities
of 30 subjects. The sensors were embedded on a smartphone
mounted on the subjects’ waist. The activities performed
were: walking, walking upstairs, walking downstairs, sitting,
standing and laying down. Four classifiers, widely applied
on multilabel data for human activity recognition, were used:
Random Forests, C5, kNN and Adaboost.

As far as recognition datasets is concerned, HAR is one of

the most known and widely used. It was introduced in [18],
where the authors tested only one algorithm, the multiclass
SVM, using all extracted features of the available sensors,
resulting in 96% accuracy. Since then, HAR dataset has
been utilized in numerous works, many of which apply deep
learning, that generally results in higher accuracy rates than
machine learning algorithms, however it is time and source
consuming. In [19], using a subset of the features included in
HAR dataset, five ensemble classifiers were used to combine
results of the two base learners, SVM and Random Forests.
To overcome issues of overfitting, [20] propose a deep convo-
lutional neural network, the perceptionNet, for late fusion and
utilized the HAR [18] dataset to tune the hyperparameters.

The rest of the paper is organized as follows: in Section 2
an overview of related work is presented. In Section 3, the
proposed frameworks are described, while Section 4 includes
the description of the experimental setup, followed by the
application and experimental results of the suggested frame-
works. Finally, in Section 5 the conclusions of this work are
briefly discussed.

II. RELATED WORK

Early or late fusion is used in activity recognition to fuse
features or results from different sensors, or even sensors
placed on different locations. A thorough overview of fusion
methods for human activity recognition from wearable sensors
can be found in [14]. The authors describe several techniques
for data, feature and late fusion and discuss the strengths and
weaknesses of different combinations of sensors. Fusion of
accelerometer and gyroscope data is the combination most
commonly found in relevant studies. In [10], the authors
propose the use of two descriptors in order to extract fea-
ture sets from accelerometer and gyroscope signals. They
compare the results of feature and late fusion, resulting in
better performance of feature fusion, which is conducted by
simple concatenation of the extracted feature sets. A data
fusion approach is presented in [26], that combines data
from accelerometers and gyroscopes to classify daily activities
and predict falls. The proposed classification algorithm uses
a threshold mechanism to combine features from the two
sensors. Convolutional neural networks are employed in [27]
to fuse accelerometer and gyroscope data at different stages
of the network. Different stages within the deep learning
algorithm respond to different types of fusion. The authors
concluded that in their application, late and hybrid fusion
perform better than early one. In the current application,
accelerometers and gyroscopes are combined using two late
fusion frameworks, a proposed weighted late fusion with
weights based on detection rate and a modified weighted late
fusion framework.

Concatenation of feature vectors is probably the most
frequent practice of fusion at feature level. Concatenation
is even found in early fusion of quite heterogeneous sen-
sors. In [25] feature vectors from a variety of sensors, like
wearable ones (accelerometers and magnetometers), location
and temperature sensors, were simply put together and an



”one-vs-one” approach was followed to recognize activities.
To eliminate variability due to the diverse nature of the
variables, authors normalized the data before training. In [11]
concatenation is employed to create various sets of features
derived from three sensors, namely accelerometers, gyroscopes
and magnetometers, and later use these concatenated features
in three types of artificial neural networks (ANN). In this work,
we chose to combine the accelerometer and gyroscope sensors
on a decision level instead of just concatenating features of
different nature.

Late fusion allows for more experimentation and develop-
ment of novel algorithms beyond the state-of-the-art. In [9]
the authors combine the results of accelerometers placed at
different body locations with model-based and class-based
weighted decision fusion techniques and also propose a poste-
rior adaptation of the class-based scheme. Our work suggests
a modification of that proposed framework, by a different
calculation of the class-based weights. In [12] they apply
two fusion techniques, hierarchical decision and majority
voting and introduce a novel one, the hierarchical-weighted
classification. The proposed method combines the benefits
of the aforementioned established fusion techniques and by
using weights reflecting each entity’s performance, they create
a ranking system for the importance of each component to
the final hierarchical fusion scheme. Reference [21] applies
several late fusion and weighted late fusion methods on
multimodal data to classify 13 activities and concluded that
among sensors, accelerometer and gyroscope were the most
important for classifying the activities. Six different weights
are incorporated in late fusion. The definition of weights
reflects the performance of the models. Accuracy and mean
square error are used for their calculation. Our proposed
frameworks introduce the use of detection rate in order to
evaluate the performance of models.

III. METHODOLOGY

In this section we describe the proposed frameworks for
the recognition of activities from multisensor data. Firstly we
propose a novel way to combine results of many sensors by
a weighted late fusion framework that uses weights related
to the detection rate of each class. Secondly, we introduce a
variation of the class-based weighted late fusion framework
proposed in [9].

A. Weighted late fusion framework

Consider a multilabel classification problem of k classes (i.e.
activities) and m models, where each model corresponds to a
different sensor. The goal is to combine the results of these
models in such a way that the recognition of the classes is
improved.

Classification problems consist of a training and a testing
stage. During the training stage of a model, the classifier
is trained on the features of each sensor using a 10-fold
cross validation. Proceeding with the testing stage, the trained
model outputs for each test case a) a predicted label and b)
a probability score P(x), expressing how possible it is for

each test case to belong to a class. In order to utilize the
information provided by the m models, we suggest combining
the probability vectors (1) of different models with weighted
late fusion.

Pij =
{
pi1(x1), ..., pik(xn)

}
, i = 1, ..,m (1)

Each model will be assigned weights (2) that relate to the
classifier’s ability to detect true positive (TP) cases among all
predictions, which is expressed by the detection rate of a class.
Detection rate, defined in (3), is considered a strict evaluation
metric since it focuses on the discovery of the true positives
and not all true findings of an algorithm. All evaluation
metrics are generally obtained when the labels predicted by
the classifier are compared with the true classes. For multiclass
problems, the comparison of predicted and actual classes is
done with the one vs all approach, meaning that the class
to be evaluated consists the ”positive” findings and all the
rest the ”negative” findings [13]. In some papers, the term
detection rate refers to the recall/sensitivity [28], which still
measures the detection of the true positives but among all
the positive cases only, i.e. true positives and false negatives
(TP+FN), while the current detection rate refers to the ratio
of true positives among all findings, including true negatives
(TN) and false positives (FP) too.

Wij =
{
wi1, ..., wik

}
(2)

DR = TP/(TP + TN + FP + FN) (3)

To assist the recognition of classes not so easily detected,
we set the weights equal to the supplementary of the detection
rate (4).

Wij = 1−DRij (4)

Weights are calculated for each class and are then multiplied
by the corresponding probability vectors as in (5). For each
class there will be m weighted probability vectors, each one
corresponding to a different sensor. The weighted probabilities
Pw of the m models will be summed together using (6),
forming a final score for each class. The final predicted label
of each test case is the class with the maximum final score.
The proposed framework is graphically presented in Fig. 1.

Pw = WijPij (5)

Scorej(x) =
∑
i

WijPij (6)



Fig. 1. Flowchart of the proposed weighted late fusion framework. Procedure
in A is repeated for each sensor, while B refers to the combination of sensors.

B. Class-based weighted late fusion framework

This framework utilizes class-based weights that are based
on prior knowledge of the performance of the classifier [9].
During the training stage, a model is trained using 10-fold
cross-validation and then tested on the same data, i.e. the train-
ing set. The predicted labels of the train cases are compared
with the true classes to evaluate the performance of the model
on the train data. We suggest utilizing the detection rate for
evaluating the model’s performance, instead of the F1-score
that is used in [9]. The formula for the calculation of detection
rate is defined in (3), however the values of the metric will
differ between the two frameworks, since they are obtained
from different stages of the classification process.

Detection rate is then incorporated in the calculations of
weights using (4). In the testing stage, the predicted class
probabilities are produced. For the whole testset there will be
probability vectors Pij (i=1,..,m and j=i,..,k) for each class.
Using an adjustment parameter a, the weights derived from
the train set and the class probabilities of the prediction of
the test set are fused using (7). The adaptation parameter a is
assigned values ranging from 0 to 1 [9].

APij(x) = aWij + (1− a)Pij (7)

Proceeding with the fusion, the final weighted class prob-
abilities of each model are added together, using (8) to form
a vector of scores for each class. This results in each test
case having a vector of scores corresponding to each class.
The class with the maximum score is assigned as the final
predicted label for each test case. The modified framework is
illustrated in Fig. 2.

Scorej(x) =
∑
i

APij(x) (8)

IV. EVALUATION

A. Experimental setup

For the evaluation of the suggested fusion scheme, the
HAR dataset was chosen [18]. HAR is publicly available
from the UCI Machine Learning Repository [29] and has
been frequently used in the literature due to its variety of
sensor signals and extracted features. The dataset consists
of 30 subjects, aged 19 to 48, each one performing six
activities (Walking, Walking Upstairs, Walking Downstairs,
Sitting, Standing, Laying). The subjects wore a smartphone
(Samsung Galaxy S II) on their waist with embedded ac-
celerometer and gyroscope sampling at 50Hz. 70% of the
obtained data were randomly chosen for training and the rest
for testing the classifiers. Raw observations were filtered and
a 2.56 sec sliding time window with 50% overlap was used
to extract features. For more detailed information we refer
the reader to the original paper [18]. Features extracted only
from accelerometer and gyroscope raw data were selected to
form the train and test sets of the corresponding modalities.
The features used in the present analysis, as described in [18],
can be found in Table I. No feature selection algorithms were
applied.

The classification problem consists of the k=6 activities
and of m=2 models, namely the accelerometer model and the
gyroscope model. For the recognition of the six activities,
several classifiers were tested, with the results of the four
that performed better reported here, namely Random Forests,
C5, kNN and Adaboost. For kNN algorithm, k was set to 5,7
and 9 neighbors for each round and the value that produced
the optimal results was reported at the end. Each algorithm
was trained using 10-fold cross-validation. In order to assess
the performance of the classifiers and compare the obtained
results, the overall accuracy of each algorithm is reported.
Accuracy is the ratio of the correct predictions (true positives
(TP) and true negatives (TN)) towards all predictions (9). For
the implementation, the R package caret was utilized [13].

Fig. 2. Flowchart of the modified class-based weighted late fusion framework.
Procedure in A is repeated for each sensor, while B refers to the combination
of sensors.



TABLE I
FEATURES USED IN THE ANALYSIS

Features
Mean

Standard deviation
Median

Maximum value of the array
Minimum value of the array

Signal magnitude area
Energy

Interquartile range
Entropy

Autoregression coefficients
Correlation coefficient

Largest frequency component
Frequency signal weighted average

Skewness
Kurtosis

Energy of a frequency interval
Angle

Accuracy = (TP + TN)/(TP + TN + FP + FN) (9)

To assess the performance of the proposed weighted late
fusion framework, the following comparisons were made: a)
with the performance of the individual sensors and b) with
the performance of other well known fusion methods, i.e.
averaging and stacking. The modified framework of class-
based weighted late fusion was compared with the initial
framework explained in [9]. The initial framework was chosen
as it is quite similar to our experimental setup, combining data
from accelerometers placed at different locations, while we try
to combine accelerometers and gyroscopes.

B. Tests

1) Implementation of the weighted late fusion framework:
In this section, we describe the application of the proposed
weighted fusion framework. For each sensor, the trained al-
gorithm produces the prediction probabilities of the test cases.
Let m=1 denote the model built on the accelerometer features
and m=2 the model of the gyroscope features. The probability
sets of the accelerometer model (10) and the gyroscope model
(11), consist of probability vectors Pij (i=1,..,m and j=i,..,k),
where each one contains the test cases’ probabilities to be
assigned to class j.

P1 =
{
P11, P12, ..., P16

}
(10)

P2 =
{
P21, P22, ..., P26

}
(11)

The detection rates of each class are obtained when com-
paring the predicted labels of the test cases with the actual
classes. The respective values of the accelerometer model (12)
and the gyroscope model (13) will be used to calculate the
weights using (4). The detection rates of the four classifiers
applied, were averaged for each sensor and are displayed in
Table II. The activities with the maximum average detection

TABLE II
AVERAGE DETECTION RATES

Activities
WALK WU WD SIT STAND LAY

Accel 0.1612 0.1336 0.1219 0.1256 0.1458 0.1818
Gyro 0.1416 0.1388 0.1066 0.1191 0.1501 0.1210
aWU stands for walking upstairs and WD for walking downstairs

rate are laying when using only the accelerometer features and
standing when predicting with the gyroscope features.

DR1 =
{
DR11, DR12, ..., DR16

}
(12)

DR2 =
{
DR21, DR22, ..., DR26

}
(13)

Before combining the results of the two sensors, the prob-
ability vectors of each model need to be multiplied by the
corresponding weights using (5), resulting in two vectors of
weighted probabilities for each sensor. The weighted proba-
bilities of the two sensors are finally added together to form
a final score for each class. Classes with the maximum score
are assigned as final labels to each test case. The described
procedure is graphically depicted in Fig. 3.

The comparison of individual sensor’s performance and
the proposed method (Table III) revealed superiority of the
proposed fusion framework for all four classification algo-
rithms tested. Table IV shows the comparison of predicted and
true labels of the proposed weighted fusion framework, with
classifier C5, that performed better among the four algorithms.
Walking, Walking upstairs and Laying were the activities better
recognized.

Regarding the recognition rate of individual activities over
all four classifiers in Table V, Laying was the activity with the
highest rate, while sitting has the smallest value over the four
classifiers.

The results of the proposed weighted late fusion framework
were also compared with the results of other popular late
fusion techniques. Particularly, we applied averaging of the
class probabilities and stacking with two algorithms: a) SVM,
which is widely used as a base learner in activity recogni-
tion problems and b) Gradient Boosting Machine (GBM), a
boosting algorithm that is usually employed in stacking tech-
nique. For averaging, the class probabilities of accelerometer
and gyroscope models are averaged and the class with the

TABLE III
COMPARISON OF RESULTS OF INDIVIDUAL SENSORS AND PROPOSED

FRAMEWORK

Accelerometer Gyroscope Weighted late fusion
Random Forests 0.8697 0.8208 0.9277

C5 0.8833 0.8161 0.9294
kNN 0.8588 0.7241 0.8972

Adaboost 0.8677 0.7479 0.8996
aThe cells include the accuracy values



TABLE IV
CONFUSION MATRIX OF C5

Activities
WALK WU WD SIT STAND LAY

WALK 487 4 9 0 0 0
WU 5 461 33 0 0 0
WD 4 6 378 0 0 0
SIT 0 0 0 413 66 3

STAND 0 0 0 78 466 0
LAY 0 0 0 0 0 534

TABLE V
AVERAGE BALANCED ACCURACY OVER FOUR CLASSIFIERS

Activities
WALK WU WD SIT STAND LAY

Average
Accuracy

0.9793 0.958 0.9346 0.897 0.9204 0.9945

highest averaged probability is assigned to every test case.
Stacking trains the selected algorithm on the predicted class
probabilities of other base learners. Here, the base learners are
the accelerometer and gyroscope models. As shown in Table
VI, the proposed framework outperforms most of the other
fusion techniques.

2) Implementation of the class-based weighted late fusion
framework: Following is the application of the modified class-
based fusion framework on the HAR dataset. During the
training stage of each classification algorithm, the trained
models were used to output predictions on the same data they
were trained on. The performance of the selected algorithms
was evaluated using the detection rate and weights were
calculated again using formula (4). In the testing stage, the
trained model was used to predict the labels and produced
the class probabilities Pij (i=1,2 and j=1,..,6). The posterior
probabilities obtained from the prediction on the testset were
combined with the class-based weights using (7). The value
of adaptation parameter was set to 0.25 since it produced
the optimal results. The described procedure was repeated
separately for accelerometer and gyroscope features (Fig. 4).
The comparison of the original framework and the proposed
modification (Table VII) shows that the modified framework
outperforms the original in three of the four classification
algorithms used.

TABLE VI
COMPARISON OF THE PROPOSED FRAMEWORK AND OTHER FUSION

METHODS

Weighted
Late
Fusion

Averaging SVM
Stacking

GBM
Stacking

Random
Forests

0.9277 0.9267 0.7978 0.9165

C5 0.9294 0.9298 0.8235 0.9158
kNN 0.8972 0.8918 0.7869 0.9036
Adaboost 0.8996 0.8966 0.6047 0.8278
aThe cells include the accuracy values

Fig. 3. Implementation of weighted late fusion

TABLE VII
COMPARISON OF ORIGINAL AND MODIFIED CLASS-BASED WEIGHTED

LATE FUSION

Classifier Original framework Modified framework
Random Forests 0.9186 0.927

C5 0.7479 0.9304
KNN 0.8979 0.8958

Adaboost 0.8992 0.9006
aThe cells include the accuracy values

Fig. 4. Implementation of the modified class-based weighted late fusion



V. CONCLUSIONS

The combination of multiple sensors assists in improving
the recognition of multiple activities. Although accelerometers
and gyroscopes are usually combined on feature level with
simple concatenation, here we suggested decision fusion of
those sensors for a multiclass activity recognition problem.
We proposed a weighted late fusion strategy for combining the
classification results of individual sensors and we incorporated
the detection rate of a classifier for the calculation of weights.
Detection rate is a performance evaluation metric that hasn’t
been employed to weighted frameworks to the extent of our
knowledge. Furthermore, using weights based on the class
detection rate, we suggested a variation of a class-based
weighted fusion strategy.

Four classifiers were used to evaluate the proposed frame-
works, with C5 and Random Forests achieving the higher
recognition rates. The experimental results revealed superiority
of the proposed scheme for the majority of the comparisons
conducted for both frameworks. To the extent of our knowl-
edge, detection rate has not been utilized in weighted fusion
schemes, especially in the activity recognition literature, and
it could constitute an alternative solution for late fusion.

Suggestions for future work include utilizing the proposed
frameworks in other application fields as well as incorporating
detection rate in more complex weighting schemes. An indica-
tive application could be to combine heterogeneous sensors
for human localization. Other suggestions include detection
of harmful events, since different data sources are utilized
and fusion is a suitable method for the exploitation of all
information available. The proposed frameworks will be tested
in the future in a real world clinical environment and a smart
home.
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