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Abstract: This research analyzes the impact of the COVID-19 pandemic on consumer service pricing
within the European Union, focusing on the Transportation, Accommodation, and Food Service sectors.
Our study employs various machine learning models, including multilayer perceptron, XGBoost, Cat-
Boost, and random forest, along with genetic algorithms for comprehensive hyperparameter tuning and
price evolution forecasting. We incorporate coronavirus cases and deaths as factors to enhance prediction
accuracy. The dataset comprises monthly reports of COVID-19 cases and deaths, alongside managerial
survey responses regarding company estimations. Applying genetic algorithms for hyperparameter
optimization across all models results in significant enhancements, yielding optimized models that
exhibit RMSE score reductions ranging from 3.35% to 5.67%. Additionally, the study demonstrates that
XGBoost yields more accurate predictions, achieving an RMSE score of 17.07.

Keywords: machine learning; genetic algorithms; COVID-19; price evolution; XGBoost

1. Introduction

The far-reaching consequences of pandemics and epidemics impact many aspects of
societies. These infectious diseases have profoundly influenced various facets of society,
including education [1], mental health [2,3], and business operations [4]. Focusing on the
business landscape, it becomes clear that these outbreaks disrupt global supply chains, re-
duce consumer demand, hinder productivity, and lead to higher unemployment rates. The
ongoing COVID-19 pandemic, in particular, has brought about unprecedented economic
consequences for businesses on a global scale.

The restrictions and lockdown measures imposed to curb the spread of the virus
have severely disrupted global supply chains, leading to shortages of raw materials and
components necessary for production [5]. Furthermore, the decrease in consumer demand
resulting from financial uncertainty and reduced purchasing power [6] has placed immense
pressure on businesses, particularly those operating in industries heavily dependent on
discretionary spending [7]. As a result, many businesses have faced significant revenue
losses, leading to closures, bankruptcies, and job losses on a large scale [8,9]. The increase
in unemployment rates has further exacerbated the economic challenges, as individuals
have struggled to meet their basic needs and businesses have faced a shrinking customer
base [10]. The COVID-19 pandemic has also disrupted workflows and productivity through
remote work arrangements and absenteeism [11]. Reduced workforce efficiency due to
illness further contributes to decreased output and economic slowdown. The intricate
relationship between consumer service prices and the fortunes of businesses takes center
stage in the wake of the COVID-19 pandemic. As businesses grapple with unprecedented
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disruptions, the ability to anticipate consumer service price trends becomes a crucial factor
for informed decision making. Notably, the challenges that businesses face—ranging from
supply chain bottlenecks to shifts in consumer demand—are intrinsically tied to pricing
dynamics. Fluctuations in consumer service prices can both reflect and shape consumer
behavior, impacting demand patterns and revenue streams. Businesses must adapt and
make critical decisions to survive and thrive [12].

The COVID-19 pandemic’s unprecedented nature, characterized by its rapid global
spread and the necessity of worldwide mandatory countermeasures, has presented busi-
nesses with an array of challenges that were previously uncharted. The limitations of
traditional forecasting methods in capturing complex dynamic shifts caused by the pan-
demic have accentuated the pressing need for informed decision making. In this scope, we
conducted this study aiming to develop a method to satisfy this need. We deploy machine
learning techniques and optimization algorithms to develop a predictive framework for
estimating the potential outlook of businesses. The foundation of our analysis lies in a
dataset that combines COVID-19 data [13] with relevant economic indicators from various
industries [14].

In this context, we aim to gain valuable insights into the impact of the pandemic on
businesses. The methodologies used are designed to uncover meaningful patterns from a
complex dataset, providing forecasts and supporting evidence-based decision making. To
the best of our knowledge, this study represents the first utilization of the XGBoost model
in a case study analyzing the impact of the COVID-19 pandemic on consumer service prices
within the European Union. In addition to immediate insights, our research paves the way
for future investigations. By understanding the impact of infectious outbreaks on economic
shifts and consumer behavior, we aim to provide a foundation for ongoing studies that
contribute to informed decision making and economic resilience.

The rest of this paper is organized as follows. In Section 2, we present existing relevant
methodologies. Section 3 describes the sources and characteristics of the data used in
this study, as well as the methodology employed, outlining the research design and the
analytical techniques implemented. In Section 4, we present our findings and analyze the
results, providing insightful interpretations. Finally, in Section 5, we discuss key findings
of our research, address limitations encountered during the study, and propose suggestions
for further investigation.

2. Literature Reviews

Understanding the implications of this unprecedented crisis on the economic growth
of businesses has become a crucial area of research [15]. Thus, there are many works of
research literature involving business modeling and forecasting in the volatile environment
of the COVID-19 pandemic. Han Khanh Nguyen [16] explored the possibility of assessing
the impact of COVID-19 on logistics businesses using mathematical models and offering
recovery and sustainability solutions. Safi et al. [17] utilized time series models to provide
insights on the future impact that the COVID-19 pandemic will have on Chinese exports.
Suanpang et al. 2020 [18] compared different methods of machine learning to predict
the business recovery of the tourism sector from the COVID-19 pandemic, while Fatemeh
Safara [19] utilized predictive modeling to forecast consumer behavior during the pandemic.
In the study by Semaa et al. [20], a genetic algorithm method was proposed for optimizing
financial supply chains in the COVID-19 environment. Gkikas et al. [21] proposed a
method for marketing decision making during the pandemic by implementing binary
decision trees and genetic algorithms. In another work, Weng et al. [22] proposed a
genetic-algorithm-based pipeline to forecast oil price volatility in the midst of the global
health crisis. HOA et al. [23] implemented a genetic algorithm method to optimize the
logistics of transportation during the COVID-19 crisis. Chaves-Maza et al. [24] explored
the utilization of the XGBoost algorithm to assess the impact of COVID-19 on the economy.
Romani et al. [25] attempted to forecast post-COVID-19 aviation business development



Electronics 2023, 12, 3806 3 of 15

using an MLP neural network, while Vărzaru et al. [26] also utilized the MLP architecture
to offer insights into tourism business resilience.

In the pursuit of creating predictive models of high robustness, optimization emerges
as a pivotal factor. Consequently, substantial research endeavors have been dedicated to
devising strategies that effectively tackle this imperative concern. A significant portion
of this research landscape revolves around the utilization of evolutionary algorithms as a
cornerstone. In [27], Jalali et al. proposed an evolutionary-based optimization for CNNs in
intelligent load forecasting. Wang et al. [28] studied a feature selection technique based on
evolutionary algorithms. Neshat et al. [29] offered a hybrid neuro-evolutionary method for
wind turbine output prediction. In [30], Arora et al. provided a custom evolutionary algo-
rithm for the hyperparameter tuning of DNNs, while SaiSindhuTheja et al. [31] studied a
metaheuristic algorithm in order to perform feature selection for RNNs. In another work,
Wang et al. [32] used an algorithm based on differential evolution to improve the perfor-
mance of CNN models. Raji et al. [33] proposed genetic algorithm hyperparameter tuning
for machine learning models. Finally, the study conducted by Borisov et al. [34] served as a
guiding benchmark, aiding in the selection of appropriate models for our research.

Informed by our previous work in [35], which laid the foundation for our current
study, we delve into the practical utilization of genetic algorithm optimization to predict
service prices in the context of the COVID-19 environment. Building upon existing research
that employs evolutionary algorithms for model improvement, our aim is to enhance the
accuracy of our price prediction models.

3. Materials and Methods
3.1. Dataset

In this study, we employed a comprehensive dataset that integrates information from
two distinct sources, each offering valuable insights into different aspects.

The first part of the dataset, which is publicly available, encompasses data on coro-
navirus cases and deaths sourced from the World Health Organization (WHO) [13]. The
provided dataset includes rates of cases and deaths for European Union (EU) countries per
month. The data were further transformed into cases and deaths per million of population,
enabling standardized comparisons across diverse regions. Figure 1 depicts the values of
COVID-19 data per month and per million of the population for five sample countries.

Figure 1. Line plots of COVID-19 data contained in the dataset for 5 sample countries.
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The second part of the dataset comprises essential information pertaining to the price
of consumer services in the Transportation, Accommodation, and Food Service sectors
across the EU [14]. These data are derived from the Joint Harmonized EU Programme of
Business and Consumer Surveys, conducted by the Directorate-General for Economic and
Financial Affairs of the European Commission. These surveys encompass various sectors of
economic activity and involve balanced responses obtained monthly by national institutes.

Within this dataset, each participating manager’s responses are accompanied by
general information about their respective businesses. The survey questions address
multiple facets, including the business situation development, the evolution of demand
over the past three months, expectations regarding future demand, changes in employment
over the past three months, and anticipated employment trends over the next three months.
Additionally, a question pertains to the estimation of changes in the price of services
provided over the next three months. The answers to this question were used as a ground
truth for this study’s predictive modeling. All the answers to the questions in this dataset
are expressed as a balanced percentage and are weighted with a coefficient dependent on
the size of the firm. The balanced percentage signifies the difference between positive and
negative answers. More specifically:

EBALt = EUPt − EDOt (1)

where EUPt is the percentage of “improved” answers, EDOt the percentage of “deterio-
rated”, and EBALt is the balanced percentage for answers in month t.

The Joint Harmonized EU Programme of Business and Consumer Surveys dataset
contains monthly entries from various businesses based in 27 EU countries, starting from
January to November 2020, for a total of 1626 entries. The distinction within the data is
made based on the sub-sector of each business. The number of entries for each sub-sector
throughout the data collection period is shown in Table 1.

Table 1. Entries of data per business sub-sector.

Sub-Sector Number of Entries

Accommodation 278

Land transport and transport via pipelines 278

Food and Beverage service activities 278

Warehousing and support activities for transportation 267

Postal and courier activities 198

Water transport 169

Air transport 158

Overall, 15 features are used as input to the model. These features are described in
Table 2. The distribution of estimations for prices in the near future contained in the dataset
is shown in Figure 2. The histogram provides insights into the range and concentration
of estimated price values, a crucial consideration for evaluating the diversity and spread
of the data. The distribution appears to be skewed toward negative values, suggesting a
tendency for lower estimated prices.

The incorporation of insights from the WHO COVID-19 Dashboard and the Joint
Harmonized EU Programme of Business and Consumer Surveys into this comprehensive
dataset offers a valuable basis for our study. It allows us to investigate various aspects of
the pandemic’s impact and analyze economic trends. By utilizing these combined data
sources, our aim is to gain a deeper understanding of the intricate relationship between
public health dynamics and the economic landscape. We apply genetic algorithms in
order to maximize the potential of this dataset and optimize model parameters to enhance
predictive performance.
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Table 2. Dataset features used as input.

Feature Description

Country Business country of origin

Country Economic Size Classification of country’s economy size into small, medium, large

Population Population of the country

Land Area Land area of country

New Cases New cases in the month of data entry

New Deaths New deaths in the month of data entry

Cases/1 million
of population Normalized cases per million of population

Deaths/1 million
of population Normalized deaths per million of population

Services sub-sectors Sub-sector of current business

Q1 Business situation development over the past 3 months

Q2 Evolution of the demand over the past 3 months

Q3 Expectation of the demand over the next 3 months

Q4 Evolution of the employment over the past 3 months

Q5 Expectations of the employment over the next 3 months

Confidence Indicator (Q1 + Q2 + Q3)/3

Figure 2. Histogram of EBALt for the expectations of service price evolution in the dataset. The x-axis
represents the estimated change in price values, while the y-axis indicates the frequency of occurrence.
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3.2. Preprocessing

In order to prepare the raw dataset for subsequent analysis, some preprocessing steps
were undertaken. These steps ensured the suitability of the data for the chosen analytical
techniques and contributed to the overall quality of the results.

Categorical features, represented as string values, required transformation into nu-
merical format. For this reason, categorical encoding was used to convert them into an
appropriate form. Additionally, prior to feeding the data into the analytical pipelines of
this study, features underwent min-max scaling. Min-max scaling was selected due to
its effectiveness in maintaining feature distributions while aligning them to a consistent
scale. Finally, the dataset was partitioned into training and testing subsets using 80% of the
samples for training purposes and 20% for testing purposes with a 5-fold cross validation
strategy. This approach translates to a training set comprising 1300 samples and a testing
set comprising 326 samples.

3.3. Methodology

The methodology of this study utilizes genetic algorithms (GAs) [36,37] to optimize the
hyperparameters of predictive models. A genetic algorithm is an optimization technique
inspired by the process of natural selection. It evolves and refines a population of potential
solutions over multiple generations to find the best solution to a complex problem. Genetic
algorithms were chosen as the optimization technique due to their ability to efficiently
search through a large solution space [38]. In this study, the fitness function for the GA was
derived from the loss function of a regressor trained on the dataset. Its aim is to minimize
the prediction error and improve the overall performance of the models. The root mean
squared error (RMSE) was used as the evaluation metric, which is defined as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (2)

where N represents the number of samples, yi is the observed value, and ŷi is the predicted
value. In this particular scenario, yi pertains to the balanced percentage of responses from
each business. This response corresponds to their estimation of the anticipated price change
for services offered over the upcoming three months. This estimation is further weighted
by a coefficient that takes into account the respective size of each firm [14]. This composite
approach ensures a comprehensive and nuanced evaluation of the pricing dynamics within
the diverse landscape of businesses under consideration.

The study employed four distinct regression models: the multilayer perceptron (MLP)
neural network architecture [39], the XGBoost model [40], the random forest model [41],
and the CatBoost model [42]. The multilayer perceptron is a neural network architecture,
comprising multiple layers of interconnected nodes, able to learn complex patterns and
relationships from data. XGBoost utilizes boosting to enhance decision trees, random
forest employs ensemble learning with multiple decision trees, and CatBoost incorporates
categorical feature support for improved performance. The genetic algorithm can be
applied to modify the hyperparameters of these models, tailoring them to extract maximum
predictive accuracy.

By employing these regression models, we aimed to leverage their respective strengths
and explore the potential performance gains in regression tasks. The subsequent sections of
the methodology chapter delve into the details of the hyperparameter optimization process
using GAs for each model, aiming to identify the most effective
hyperparameter combinations.

In Figure 3, we present the iterative process of training predictive models on the
training data, evaluating their performance on the test data, and using the resulting loss as
a fitness function for the GA. Subsequently, the GA generates new populations of hyperpa-
rameter combinations through crossover and mutation. This iterative process continues
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for a specified number of generations, aiming to converge on optimal hyperparameter
configurations that improve model performance.

Hyper-parameter
population

Regression Model
Training

Regression Model
TestingGenetic Algorithm

Training
Data

Test
Data

Fitness - Loss

Model
Predictions

Figure 3. Visual representation of the core steps involved in the hyperparameter-tuning pipeline
using a GA.

The following subsections provide a detailed breakdown of the utility that each part
of the presented pipeline has.

3.3.1. Genetic Algorithm

The GA was employed for optimizing the hyperparameters of the models, with the
population characteristics defined as follows:

• Population Size: A population size of 100 individuals was selected for each generation.
This choice aimed to strike a balance between exploring a diverse range of hyperpa-
rameter configurations and computational efficiency. A larger population size allows
for a more comprehensive search of the hyperparameter space, increasing the chances
of finding optimal solutions.

• Mutation Probability: A mutation probability of 0.2 was set to introduce small random
changes to the hyperparameters of individuals in the population. This probability
ensures that the GA explores new regions of the hyperparameter space beyond the
initially selected individuals. By incorporating mutation, the GA promotes exploration
and prevents premature convergence to suboptimal solutions.

• Crossover Probability: The crossover probability was set to 0.8, facilitating the ex-
change of hyperparameter characteristics between selected individuals during repro-
duction. Crossover enables the recombination of promising hyperparameter combi-
nations, potentially leading to the discovery of better solutions. A higher crossover
probability increases the chances of sharing beneficial hyperparameter traits between
individuals in the population.

• Number of Generations: The GA was executed for 10 generations, allowing the
population to evolve and improve over time. This number of generations strikes a
balance between allowing sufficient iterations for convergence and avoiding excessive
computational time. By evolving the population over multiple generations, the GA
refines the hyperparameter configurations toward more optimal solutions.

The population characteristics were carefully determined through experimentation,
with the goals of attaining optimal results while ensuring computational efficiency. The
specified GA was applied consistently to all the models. By defining these parameters, the
GA efficiently explored the hyperparameter space, gradually converging toward optimal
hyperparameter combinations that maximize the performance of the models.

Figure 4 illustrates examples of the population generated by the GA and provides
insights into the characteristics of selected individuals. These examples highlight the
diverse hyperparameter configurations explored by the GA during its optimization process.
By observing these individuals, we can showcase the range of hyperparameter values and
combinations explored by the GA in its search for optimal solutions.
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Figure 4. Example populations generated by the GA. Each node represents an individual within the
population, with each subfigure corresponding to a different optimization process. (a) demonstrates
the MLP optimization population, while (b) demonstrates the XGBoost optimization population. The
highlighted nodes in each subfigure depict example characteristics of individual configurations.

The genetic algorithm was executed to identify the optimal hyperparameters for all
the models. Each model’s fitness function, derived from the loss function, guided the
GA’s search for optimal hyperparameter combinations. The GA iteratively evolved the
population over 10 generations, selecting individuals based on their fitness, performing
crossover, and applying mutation to explore different hyperparameter configurations.
The fittest individuals, which exhibited the lowest prediction error, were prioritized for
reproduction, fostering the convergence of the population toward optimal solutions.

Following the GA optimization, a small grid search was conducted around the best
hyperparameters obtained from the GA. This additional fine-tuning step aimed to further
enhance the models’ performance by exploring neighboring values of the optimized hyper-
parameters. While the GA effectively explores a wide range of combinations, it may not
exhaustively search the immediate vicinity of the best configuration found. The grid search
involved systematically evaluating the performance of the models with slight variations in
the identified hyperparameters, allowing us to identify potential performance gains that
may not have been captured during the GA optimization process. By extensively exploring
the range of parameters available, we ensured that the models were configured with the
most optimal settings.

3.3.2. MLP Optimization

Each member of the population used for the MLP optimization process was repre-
sented by several hyperparameters that determined the model configuration. The popula-
tion for the MLP fine-tuning contained the following hyperparameters:

• Number of Layers: The number of hidden layers for the MLP architecture ranged
from 1 to 50 in order to uncover the optimal network depth.

• Optimizer: The choice of optimizer was restricted to stochastic gradient descent (SGD)
and Adam.

• Activation Function: The MLP architecture employed different activation functions,
including rectified linear unit (ReLU), hyperbolic tangent (Tanh), logistic (Sigmoid),
and identity.

• Batch Size: The batch size for training varied between 4 and 128.
• Learning Rate: The learning rate ranged from 0.01 to 0.1, providing a range of step

sizes during model training.
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Table 3 summarizes the best hyperparameters obtained for the MLP architecture. The
optimization techniques (GA and GA + GS) successfully identified optimal hyperparameter
combinations for each architecture, leading to improved performance.

Table 3. MLP best parameters.

Optimization Layers Learning Rate Activation Function Optimizer Batch
Size

GA 48 0.081 ReLU Adam 39
GA + GS 46 0.081 ReLU Adam 36

3.3.3. Random Forest Optimization

The optimization process for the random forest model involved the fine-tuning of
several critical hyperparameters to enhance predictive performance. The selected hyperpa-
rameters for the random forest optimization included:

• Minimum Samples Split: The minimum number of samples required to split an
internal node in the random forest ranged from 2 to 10, aiming to control tree growth
and overfitting.

• Minimum Samples Leaf: The minimum number of samples required to form a leaf
node varied between 1 and 5, influencing the granularity of tree structures.

• Number of Estimators: The number of decision trees in the random forest ensemble
was explored across a range from 50 to 1000.

• Maximum Depth: The maximum depth of each tree in the ensemble spanned from 3
to 10, impacting the complexity of individual trees.

The hyperparameters fine-tuned through the optimization process for the random
forest model are displayed in Table 4.

Table 4. Random forest best parameters.

Optimization Max Depth Estimator Number Min. Samples Split Min. Samples Leaf

GA 9 292 2 4
GA + GS 9 295 2 2

3.3.4. CatBoost Optimization

The hyperparameters selected for optimization in the fine-tuning of the CatBoost
model include the following:

• Number of Estimators: The number of trees in the CatBoost ensemble varied from 50
to 1000.

• Maximum Depth: The maximum depth of each tree ranged from 3 to 10.
• Learning Rate: The learning rate for boosting iterations ranged from 0.01 to 0.5.
• L2 Regularization: The L2 regularization parameter, which controls the amount of

regularization applied to the model, ranged from 1 to 10.

The outcomes of the optimization process for the CatBoost model are summarized in
Table 5, showcasing the refined hyperparameters.

Table 5. CatBoost best parameters.

Optimization Max Depth Estimator Number Learning Rate L2 Regularization

GA 5 603 0.134 0.5
GA + GS 5 601 0.144 0.5
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3.3.5. XGBoost Optimization

The hyperparameters selected for optimization in the fine-tuning of the XGBoost
model include maximum depth, number of estimators, gamma, and learning rate:

• Maximum Depth: The maximum depth of each tree ranged from 3 to 10.
• Number of estimators: The number of trees in the XGBoost ensemble varied from 50

to 1000.
• Gamma: The gamma parameter, controlling the minimum reduction in loss required

for further partitioning, varied between 0.0 and 1.0.
• Learning Rate: The learning rate for boosting iterations ranged from 0.01 to 0.1.

Table 6 showcases the final hyperparameters of the XGBoost model obtained through
the optimization process.

Table 6. XGBoost best parameters.

Optimization Max Depth Estimator Number Learning Rate Gamma

GA 6 969 0.03466 0.3315
GA + GS 6 960 0.03766 0.3515

In summary, the methodology employed a genetic algorithm to optimize the hyper-
parameters of various machine learning models. The GA leveraged a fitness function
derived from the loss function to guide the search for optimal combinations. The optimized
hyperparameters were then fine-tuned through a small grid search, allowing for further
performance improvements. The subsequent sections present the experimental results and
analyses, showcasing the performance enhancements achieved by the optimized models.
All results presented in this study were obtained through 5-fold cross-validation.

4. Test

In this section, we present the outcomes and findings derived from our experimental
analysis. To provide a well-rounded view of our experimentation, we also delve into
the experimental setup that underpins our analysis, detailing the hardware and software
configurations utilized for these assessments. The results include the performance eval-
uation of the different algorithms implemented and the performance assessment of the
GA-optimized models, as well as the results of the GA and grid search optimization. These
results provide information regarding the effectiveness and impact of the various tech-
niques employed in our study, offering insights into their performance and potential for
enhancing predictive accuracy.

4.1. Experimental Setup

The experiments were conducted on a system equipped with a 12th Gen Intel Core
i5-12600 × 12 CPU (Intel Corporation, Santa Clara, CA, USA), 16 GB of RAM, and an
NVIDIA GeForce RTX 3060 GPU (Nvidia Corporation, Santa Clara, CA, USA). The operat-
ing system used was Ubuntu 22.04.2 LTS. The experiments were implemented in Python,
utilizing libraries and frameworks such as Scikit Learn 1.2.0, NumPy 1.23.5, XGBoost 1.7.3,
and DEAP 1.3.3 for the genetic algorithms.

4.2. Results

Table 7 presents a summary of the results obtained for each model, displaying the
corresponding RMSE values under three scenarios: models without any modifications,
models enhanced using the GA, and models further refined through a combination of the
GA and grid search.

The results obtained from the experiments provide valuable insights into the perfor-
mance of the models. It is evident that applying the GA consistently led to significant
improvements in all the models. However, when combining the GA with GS, even better
results were achieved. The random forest exhibited the most notable improvement, with
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a 5.67% lower RMSE score from the initial experiment. Meanwhile, the XGBoost model,
which secured the top performance, also experienced notable improvement, achieving a
5.11% decrease in RMSE score. These findings underscore the effectiveness of employing
optimization techniques in enhancing the predictive performance of machine learning
models, leading to more accurate and reliable predictions for the given task.

Table 7. Experimental results of each pipeline for different stages of optimization.

Model Initial RMSE GA-Optimized
RMSE

GA- and
GS-Optimized

RMSE

Percentage
Improvement

MLP 19.65 19.31 18.99 3.35%
Random Forest 19.03 18.13 18.05 5.15%

Catboost 18.26 17.55 17.22 5.67%
XGBoost 17.99 17.23 17.07 1 5.11%

1 Among the models compared, the XGBoost algorithm exhibited the best performance.

The XGBoost algorithm achieved the best performance in terms of the lowest RMSE
score, outperforming the rest of the implemented methods. Specifically, the XGBoost
algorithm obtained an RMSE score of 17.07, while the second-best model was the CatBoost,
achieving an RMSE score of 17.22.

Figure 5 presents a bar plot illustrating the performance results of our models at differ-
ent stages of hyperparameter optimization. The bars represent the RMSE achieved for each
experiment conducted. The three sets of bars correspond to the initial model performance,
the performance after GA optimization, and the further improvement achieved through
GA + GS optimization.

Figure 5. This figure provides a visualization of the experimental results produced by each different
pipeline with a comparison of the optimization techniques used.

For further analysis of our results, we also present a consolidated view of the final
results achieved by our models. Figure 6 below provides a comprehensive visual represen-
tation of the performance of the models after optimization.



Electronics 2023, 12, 3806 12 of 15

Figure 6. In this figure, scatter plots of the different models’ predictions are shown.

The combined scatter plots depict the predictive capabilities of the models, attained
through optimization, with XGBoost demonstrating a slightly superior performance, fol-
lowed closely by CatBoost. While outliers present some difficulties for all models, they
are outweighed by the overall performance enhancements achieved through optimization.
This analysis reinforces the efficacy of our methodology in elevating model performance,
and suggests the potential of XGBoost to offer reliable forecasting predictions even in
complex scenarios.

5. Conclusions

The COVID-19 pandemic has had a significant impact on businesses and economies
worldwide. This study focuses on forecasting the price of consumer services during the
pandemic using machine learning techniques and optimization algorithms. We utilized
various machine learning models and applied a GA to optimize their hyperparameters.

The findings indicate that genetic algorithms significantly improve the performance of
the models, resulting in more accurate predictions of service price evolution. This suggests
that genetic algorithms are effective in identifying optimal hyperparameter configurations
that contribute to better model generalization and prediction accuracy. Among the models
compared, XGBoost exhibited the best performance, with an RMSE of 17.07, indicating the
strength of its ensemble learning approach.

The integration of survey responses from managers not only adds empirical validation
to our predictive models but also lays the groundwork for a comprehensive framework for
accurate consumer service price forecasting. This fusion enriches the analysis by infusing
real-world perspectives into our predictive models, thereby enhancing their practical
relevance. Moreover, this research underscores the potential of integrating diverse data
sources and utilizing advanced optimization techniques within the predictive modeling
paradigm. This approach demonstrates its promise in enhancing prediction accuracy and
model generalization. Importantly, these findings set the stage for future research that could
yield insights with implications for business strategies and policy formulation. By doing
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so, this work opens avenues for stakeholders to draw upon valuable insights and make
well-informed decisions amid the dynamic landscape of market conditions. To the best of
our understanding, this study represents a pioneering effort in developing a comprehensive
forecasting framework tailored to predict consumer service prices. Through the integration
of diverse data dimensions and the application of advanced optimization methods, this
research builds upon previous investigations. This unique approach positions our work as
a meaningful step toward bridging the gap between predictive modeling and the intricate
dynamics of real-world consumer service pricing.

However, it is important to acknowledge the limitations of our study. The data
used only span up to November 2020, potentially missing the full extent of the pandemic’s
impact. Additionally, the exclusion of external factors such as geopolitical events and policy
changes could limit the comprehensive understanding of observed effects. Moreover, the
study’s focus on the European Union and specific sectors may restrict the generalizability
of findings to other regions, industries, and populations.

In summary, this study contributes to the field of business modeling and forecasting
during the COVID-19 pandemic. The results underscore the effectiveness of employing
advanced analytical tools, such as neural networks and genetic algorithms, to navigate
the challenges imposed by this unprecedented crisis. The XGBoost model’s superior
performance further highlights the importance of considering boosting algorithms for
tackling complex regression tasks.

In regard to future research, there are several avenues to further enhance the study’s
predictive performance and gain a deeper understanding of how a public health crisis
impacts the economy. One key direction is to further expand the dataset by incorporating
additional data sources. Utilizing mobility data, vaccination rates, and government policies
could offer valuable insights into the complex interplay between public health measures
and economic indicators. Additionally, the type of currency used, inflation rates across
different countries, the political regime in place, population density, and the age distribution
of the population can contribute to more robust models. Furthermore, temporal analysis
can be extended beyond November 2020 to capture the evolving effects of the pandemic
over a longer period. This extended timeframe would enable the development of a more
robust predictive model, enhancing its capabilities to effectively generalize and make
accurate predictions on unseen data. Exploring other state-of-the-art predictive models
could also be a valuable approach for future research. Adopting advanced machine learning
algorithms and methodologies may provide additional perspectives and opportunities
to improve the accuracy and interpretability of predictions. By exploring these potential
directions for future research, we can deepen our understanding of how public health
crises impact the economy and pave the way for more informed strategies to address such
challenges effectively.
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COVID-19 Coronavirus Disease 2019
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ReLU Rectified Linear Unit
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