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ABSTRACT
This work presents a spatio-temporal activity detection and recog-
nition framework for untrimmed surveillance videos consisting
of a three-step pipeline: object detection, tracking, and activity
recognition. The framework relies on the YOLO v4 architecture for
object detection, Euclidean distance for tracking, while the activity
recognizer uses a 3D Convolutional Deep learning architecture em-
ploying spatio-temporal boundaries and addressing it as multi-label
classification. The evaluation experiments on the VIRAT dataset
achieve accurate detections of the temporal boundaries and recog-
nitions of activities in untrimmed videos, with better performance
for the multi-label compared to the multi-class activity recognition.
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1 INTRODUCTION
Activity recognition has been widely explored in computer vision
problems when using trimmed videos [4, 5, 9, 17], while the tempo-
ral localization and activity recognition in untrimmed video footage
has been less studied and thus, remains a big challenge [12, 14].
The main challenges stem from the visual footage’s untrimmed
nature, the number of involved activities, the varying length of
co-occurring activities, and the multiple actors/objects involved
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within each activity. Moreover, the interaction between/among ob-
jects and the diversity of the spatial regions where each activity
occurs, compared to the camera’s projection plane, is also a chal-
lenge in itself. These issues are further compounded in the context
of real-life applications, such as surveillance systems, that involve
multiple similar objects of interest (e.g. trucks, cars, and vans) that
are independently detected, while some of the detected objects of
interest (e.g., parked cars) may not actually participate in the target
activities, and thus should be removed from consideration.

Spatio-temporal activity detection and recognition in such real-
life applications is a complex problem and typically involves a
pipeline of several computer vision components executed in se-
quence [12, 14]. First, an object detection component analyzes the
untrimmed video footage to identify objects of interest. An object
tracker then follows, intending to retain the track of the objects
identified in the previous step. Finally, the activity localization and
recognition component considers the object tracking information
to predict the spatio-temporal boundaries and classify the latter to
specific categories of activities.

This work presents a spatio-temporal activity detection and
recognition pipeline for untrimmed surveillance videos focusing on
human- and vehicle-related activities. The framework relies on the
YOLO v4 [2] architecture for recognizing the detected objects, uses
the Euclidean distance for the tracking process, and finally employs
a 3D-Convolutional Neural Network (3D-CNN) architecture [7], in
particular, a 3D-ResNet with 50 layers, for recognizing the target
human- and vehicle-related activities.

Specifically, this work considers activity recognition as a multi-
label, rather than a multi-class problem, to effectively recognize
concurrent activities performed by the same object. To this end,
it proposes the use of spatio-temporal boundaries generated by
the union of the individual bounding boxes of the detected objects
over a time window. To the best of our knowledge, this is the first
time that such spatio-temporal boundaries are considered in ac-
tivity recognition, both by multi-label and multi-class approaches.
Moreover, this work fine-tunes the object detection as part of the
pipeline to reduce the amount of post-processing required for the
removal of specific instances of the objects of interest that should
not be considered by the activity recognition (such as static objects)
according to the annotations of the dataset, as well as for the merg-
ing of similar objects (such as trucks, cars, and vans merged into
the ‘vehicle’ class). The enhanced framework is evaluated using the
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VIRAT dataset [13] and the experimental results indicate accurate
detections of the temporal boundaries and recognitions of activities
on processing untrimmed videos.
2 RELATEDWORK
2.1 Object Detection & Tracking
There has been a plethora of object detection methods introduced
during the past decade [11, 16], but only a small minority has re-
ported real-time performance in object recognition and tracking
when executed in real operational scenarios. Tan et al. [18] pro-
posed a real-time object detector, named EfficientDet, that focuses
on identifying specific objects efficiently by using a deep neural
network architecture that consists of a weighted bidirectional de-
sign topology that enables the learning of the "importance" features
at different scales. Moreover, Bochkovskiy et al. proposed YOLO v4
[2], the upgraded version of YOLO v3 [15], which enables fast and
accurate training processes using common GPUs. They also veri-
fied the importance of utilizing Bag-of-Freebies and Bag-of-Special
approaches for object detection. EfficientDet [18] and YOLO v4
[2] approaches indicate a trade-off between time-efficiency and
accuracy compared to the rest of state-of-the-art approaches.

2.2 Activity Detection & Recognition
Gao et al. [6] proposed the TURN TAP overlapping sliding window
approach. Calculation time was decreased without significantly
affecting the accuracy of temporal localization. By considering the
novel characteristics of Faster-RCNN [16], they transformed the
problem of boundary detection to a problem of boundary regression.
Each video is divided into 16-frames length clips and the features
are extracted using a 3D-CNN, namely the 3CD network [19]. Fi-
nally, 1-D feature vectors are computed to calculate the temporal
coordinates offset and the confidence score, similarly to Faster-
RCNN. Lin et al. [10] proposed the Boundary-Sensitive Network
(BSN) architecture that proved efficient for both short and long
duration activities, as it firstly generates possible boundary points
and selects the points that have been predicted with higher scores.
Subsequently, starting and ending points are combined to select the
activities’ boundaries and generate the sequence for each activity,
especially the start, mid, and the end parts.

Rana et al. [14] proposed a real-time method that comprises
three stages: the detection of activities tubelets, their classification,
and, finally, their merging using the Tubelet-Merge Action-Split
(TMAS) algorithm to generate spatio-temporal detections with high
speed. Liu et al. [12] proposed a method that first generates video
proposals by applying object detection and tracking, then classifies
the proposals’ features and eliminates inaccurate events, and lastly
fuses the predictions. However, these methods do not consider the
spatio-temporal boundaries of an object which includes the entire
field of action during its trajectory.

3 SPATIO-TEMPORAL ACTIVITY DETECTION
AND RECOGNITION

This work presents a spatio-temporal activity detection and recog-
nition framework that comprises the following three-stage pipeline:
detection of objects of interest, object tracking, and activity recog-
nition. Based on this sequential framework, the desired activities

Figure 1: Illustration of the pipeline for the basic (left) and en-
hanced configuration of the framework (right).

can be identified in untrimmed video footage by exploiting the
extracted object boundaries and by tracking their course. We pro-
pose that the estimated bounding boxes comprise both temporal
and spatial object boundaries, where "temporal" refers to the start
and ending timestamps of the activities, while "spatial" refers to
the localization of the activities within the acquisition camera’s
projection plane and field of view.

We first consider a basic configuration of the framework (denoted
as “B”) as follows. For object detection (B-OD), a deep CNN ar-
chitecture, namely YOLO v4, is employed for (near) real-time object
identification. In particular, a pre-trained model under the COCO
dataset is considered as it involves target objects, such as vehicles
and persons, that are relevant to the activities of interest. For ob-
ject tracking (B-OT), a frame-by-frame comparison technique is
deployed where the Euclidean distance is exploited as the metric
among the detected objects in two subsequent frames. Thus, adja-
cent objects between two frames are considered to correspond to
the same object when their distance satisfies a threshold. Since the
COCO dataset considers various classes of objects, further to the
person and vehicle classes of interest, post-processing steps to filter
any redundant detections should be introduced. These steps are
summarized as the filtering of the target objects, the exclusion of the
static ones, and the merging of similar classes as trucks, buses, and
cars to one unified ‘vehicle’ class. At this step, i.e., during the track-
ing of each specific object, the spatio-temporal boundaries are also
generated by the union of the separate bounding boxes. For activ-
ity recognition (B-AR), a 50-layer 3D-ResNet [7] architecture is
used. The architecture consists of four sequential bottleneck blocks,
three 3D-convolution (with variant kernel sizes), batch normaliza-
tion and ReLU activation layers, while the temporal dimension is
set equal to 16. As the initial step, the weights of the Kinetics dataset
[4] were pre-loaded, a common practice in the activity recognition
problem [7]. This architecture involves a single-label assignment
mechanism to each identified trimmed activity.

An enhanced configuration of the framework (denoted as “E”)
improves the basic approaches as follows. For object detection
(E-OD), the YOLO v4 model is fine-tuned for 20 epochs to target
only the detection of vehicle and person objects; as a result, we
avoid the time-consuming post-processing steps as the generated
predictions are more accurate, outputting the desired objects’ types.
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For object tracking (E-OT), the Euclidean distance as well as the
calculation of the spatio-temporal boundaries, which are generated
by the union of the separated bounding boxes, are used, similarly
to the basic approach. Figure 1 illustrates with green the post-
processing steps of object filtering that are skipped. Specifically, the
object filtering post-processing step is avoided as the object detector
returns only labels of objects related to vehicles and humans. Also,
as the various vehicle-related objects such as cars, trucks, vans
have been merged into a single object label ‘vehicle’, the post-
processing step that merges objects classes is skipped. Finally, the
post-processing step of removing static objects, especially parked
vehicles, is avoided as the enhanced framework deals with detecting
vehicles with no occlusions and captured by multivariate poses
during detection and tracking.

For activity recognition (E-AR), the main difference between
the basic and the enhanced approach is the transformation of the
multi-class problem to amulti-label one. Specifically, a binary vector
is generated for each detected object, sized equal to the number of
frames during its tracking. Zeros indicate activities non-occurrence,
while ones indicate activities occurrence. Thus, given a sequence of
16-frames, multi-label annotations are learned for each calculated
spatio-temporal activity boundary. Regarding the recognizer, the
same architecture to the basic has been incorporated by replacing
the categorical cross-entropy loss with the weighted binary cross-
entropy loss function to transform the problem into a multi-label
objective and deal with unbalanced datasets.

4 EXPERIMENTAL EVALUATION
4.1 Datasets
Several datasets are available for evaluating activity recognition,
such as THUMOS14 [8], ActivityNet 1.3 [3], and Kinetics-700 [4].
These datasets consider trimmed videos and thus do not need tem-
poral boundaries annotations. Although there are some datasets
with temporal boundaries annotations in long untrimmed videos,
such as the MEXaction2 [20], these only include a small number of
activity classes; e.g., MEXaction2 considers only two classes.

As the aforementioned datasets are not appropriate for the dis-
cussed problem, we considered part of the VIRAT [13] dataset re-
lated to a CCTV surveillance system, namely the VIRAT-ActEV
dataset that is annotated for both activities and objects by the Na-
tional Institue of Standards and Technology (NIST) in the scope of
the Activities in Extended Videos (ActEV) TRECVID challenge[1].

Three sub-sets for training, validating, and testing compose the
dataset, with annotations provided only for the training and vali-
dation sets. The test set of the dataset is not accompanied by an-
notations, as it constitutes material for upcoming challenges. The
training set consists of 64 videos that describe 4311 activities sam-
ples, while the validation set comprises 54 videos with 3521 activi-
ties samples. The unique number of activities is equal to 35, with
19 being human-related, 6 being vehicle-related, and the rest 10
describing human-vehicle interactions. The field of view of the cam-
eras used is extremely-wide and is characterized by high resolution
(e.g. 1920 × 1080), while the annotations include varying length
activities, human and vehicle interaction, and the simultaneous
occurrence of activities.

4.2 Experimental setup
For enhanced object detection (E-OD), the YOLO v4 detector
was fine-tuned using the VIRAT-ActEV dataset. In particular, due
to the lack of publicly available annotations of its testing set that
prevents any experiment outside the scope of TRECVid challenge,
the training set of VIRAT-ActEV was split into three sub-parts,
with the commonly used 60:30:10 ratio, to train, validate, and test
the performance of the fine-tuned model. For activity recogni-
tion (B-AR and E-AR), the original training and validation sets
of the VIRAT-ActEV are used for training and validation/testing,
respectively.

4.3 Evaluation Metrics
For evaluating object detection, the mean Average Precision (mAP)
at different levels of Intersection over Union (IoU) is used. Eval-
uation measures for activity detection and temporal localization
include the Probability of Missed Detection (Pmiss) and the Time-
based false alarm (Tfa) measures. Pmiss (Equation 1) is the fraction
of reference activity instances not detected by the system. Tfa (Equa-
tion 2) is the fraction of non-activity instance time as indicated by
the ground truth references, for which the proposed system falsely
identified an instance.

In this work, the primary measure for activity detection and
recognition will be the normalized calculation of the partial Area
Under the Detection Error Tradeoff (DET) Curve (nAUDC) from 0
to a fixed Tfa value 𝑎, denoted nAUDCa (Equation 3). The partial
nAUDC is computed separately for each activity. A system is scored
on both of these, measured by Pmiss and Tfa. The use of multiple
thresholds creates the DET curve. The final evaluation summarises
the DET curve: the nAUDC across the Tfa ranges between [0, a]
and normalizes the value to [0:1]. In brief, less errors are reflected
with lower values for the aforementioned metrics.

𝑃𝑚𝑖𝑠𝑠 (𝑥) =
𝑁𝑚𝑑 (𝑥)

𝑁𝑇𝑟𝑢𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒
, (1)

where𝑁𝑚𝑑 (𝑥) = The number of missed detections at the confidence
score threshold that results in𝑇 𝑓 𝑎(𝑥), 𝑁𝑇𝑟𝑢𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 = The number
of true instances in the sequence of reference, and 𝑃𝑚𝑖𝑠𝑠 (𝑥) = The
probability of missed detections (instance-based) value for 𝑇 𝑓 𝑎(𝑥).

𝑇𝑓 𝑎 =
1
𝑁𝑅

𝑁𝑓 𝑟𝑎𝑚𝑒𝑠∑
𝑖=1

𝑚𝑎𝑥 (0, 𝑆
′
𝑖 − 𝑅

′
𝑖 ) (2)

where 𝑁𝑓 𝑟𝑎𝑚𝑒𝑠 = The duration (frame-based) of the video, 𝑁𝑅 =
The duration of the video without the target activity occurring, 𝑆

′
𝑖

= The probability of missed detections, and 𝑅
′
𝑖
= The total count of

reference instances for frame i.

𝑛𝐴𝑈𝐷𝐶𝑎 =
1
𝑎

∫ 𝑎

𝑥=0
𝑃𝑚𝑖𝑠𝑠 (𝑥)𝑑𝑥, 𝑥 = 𝑇𝑓 𝑎 (3)

4.4 Evaluation Results
For evaluating both configurations of the framework, the following
experiments were performed.

1. For object detection: (B-OD) vs (E-OD)
Figure 2 illustrates the loss of the training set along with the

mAP of the validation set during the training of the fine-tuned
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(E-OD) classifier on the VIRAT-ActEV dataset. As it is presented,
the training loss is reduced as the step number is increased, while
the mAP increases, confirming the model’s successful fine-tuning.

Figure 2: Loss and mAP values for the training and validation sets,
respectively, during object detector training.

We evaluate both the native object detector (B-OD) trained using
the COCO dataset and the fine-tuned (E-OD) using the VIRAT-
ActEV dataset. For region proposals, we set the confidence thresh-
old to 0.25 (as suggested by the YOLO v4 developers1) and report
the mAP with different IoU thresholds in Table 1. The best mAP
is achieved by the fine-tuned object detector; however, the main
difference between the models relies on the irrelevant detections
that B-OD inserts, thus increasing the number of false positives.

Table 1: Object detection mAP for different IoU values.
COCO VIRAT-ActEV

mAP@0.5 17.68% 89.42%
mAP@0.6 11.59% 87.29%
mAP@0.7 5.76% 81.42%

2. For object tracking: (B-OD) & (B-OT) vs (E-OD) & (E-OT)
After finalizing the fine-tuning using the VIRAT-ActEV dataset,

many post-processing steps can be ignored by the process. In partic-
ular, predictions can be performed on objects belonging to classes
‘person’ and ‘vehicle’ without the necessity of filtering and merging
the objects excluded from the VIRAT-ActEV dataset. Also, Table 1
indicates highly accurate object detections, particularly in terms of
𝑚𝐴𝑃@0.50. Finally, no discarding of the static vehicles is required,
as, in the fine-tuning process, the annotation consists only of non-
static vehicles; hence, the predictions of the object detector for the
class vehicle corresponds only to moving objects. This is due to
the different background and captured angles of static/non-static
vehicles and the absence of occlusions among the non-static objects.

To assess the activity localization performance, especially the
temporal boundaries detection, pairs (B-OD) & (B-OT) and (E-OD)
& (E-OT) were compared. The discussed evaluation metrics are
used with the assumption that all activities belong to the same and
only class "temporal evaluation boundaries". Therefore, we create a
DET curve for the different threshold values. For different ranges of
Tfa between 0 and 1, we calculate the partial nAUDC for all videos’
temporal activity boundaries in the validation set of VIRAT-ActEV
and their corresponding normalized values in that range.

The normalized values for every range are illustrated in Figure
3 where E-OD displays significantly lower values for the partial
nAUDC, than the B-OD, especially in the Tfa rangewith a right limit
at 0.25 until 0.85. This indicates the fewer errors of the fine-tuned
object detector to proposing temporal boundaries, in contrast to the
1https://github.com/AlexeyAB/darknet

basic. Considering that the fine-tuned detector does not require any
additional filtering, the results indicate an accuracy improvement,
while the E-OD extracts faster estimations in inference mode.

Figure 3: Temporal boundaries reported performance.
3. For activity classification: (E-OD) & (E-OT) & (B-AR) vs

(E-OD) & (E-OT) & (B-AR)
An essential adaptation of of the framework was the conversion

of the 3D-ResNet classifier to support multi-label predictions. Our
experiments above showed that the (E-OD) & (E-OT) approach
generates more accurate temporal boundaries. Hence, in order to
perform a fair comparison we selected E-OD and tracker to pre-
dict the temporal boundaries to evaluate the effectiveness of the
different (B-AR) and (E-AR) classifiers. For (E-AR), the activities
predicted with a confidence score above different threshold values
(60%, 70%, and 80%) were retained for evaluation; this was applied
to objects involved in one or many activities.

As Table 2 shows, the results using multi-label predictions reflect
higher effectiveness (lower nAUDC) compared to the multi-class
approach. This indicates that multi-label classification captures
an object’s multiple activities simultaneously and more accurately
than the multi-class approach. Moreover, the best performance is
reported for the threshold with the lowest value.

Table 2: nAUDC for various threshold values.
Threshold 60% 70% 80%
Multi-class 0.8739
Multi-label 0.8240 0.8373 0.8495

5 CONCLUSIONS
In this work, we address the problem of detecting and recognising
activities in untrimmed surveillance videos by employing sequential
modules consisting of an object detector and tracker accompanied
by an activity classifier. For object detection and tracking, the YOLO
v4 architecture and the Euclidean distance, are respectively, used,
followed by the calculation of the spatio-temporal boundaries based
on the union of the individual bounding boxes of the detected ob-
jects over a time window. For activity classification, a multi-class
and a multi-label approach are examined. The detailed experimental
evaluation indicates that the proposed improvements are advanta-
geous. Future work includes the investigation of alternative ways
to manage multiple resulting activities.
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