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Graph embedding methods have been developed over recent years with the goal of mapping graph data structures into low
dimensional vector spaces so that conventional machine learning tasks can be efficiently evaluated. In particular, random
walk based methods sample the graph using random walk sequences that capture a graph’s structural properties. In this work,
we study the influence of edge weighting strategies that bias the random walk process and we are able to demonstrate that
under several settings the biased random walks enhance downstream community detection tasks.
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1 INTRODUCTION
Over the past few years, there has been a notable increase in the volume of data produced and exploited by
applications and services that handle various types of networks. Most of these networks, such as citation networks,
sensor networks and, most notably, social networks, can be naturally modelled through graph data structures,
with the networks’ entities and relationships being represented by a graph’s nodes and edges respectively.
Subsequently, by performing graph analytics tasks, such as node classification [1], link prediction [13], and
community detection [8], we can discover inherent characteristics of the network’s nature and gain additional
insight regarding the relationships of its entities.

Recently, graph embedding methods that provide a latent representation of the graph data in a low-dimensional
vector space have been developed. These methods employ the graph’s components (nodes, edges, and features or
attributes) and produce a mapping into an embedding space that targets to preserve the graph’s topology and
overall structural properties (such as the pairwise distance between nodes). The resultant graph embeddings can
then be utilized for analytics tasks that are based on conventional machine learning mechanisms (e.g. executing
the 𝑘-means algorithm to obtain a partition of the graph’s nodes).
Graph embedding methods that map graph nodes to vector spaces can be typically categorized into three

types [6]: (i) matrix factorization methods, (ii) deep learning methods, and (iii) methods based on random walks.
Factorization methods attempt to accurately decompose the graph’s adjacency matrix into eigenvectors and
eigenvalues, while deep learning methods employ multi-layer architectures to capture structural similarity
between nodes. Finally, random walk methods sample node sequences by executing random walks among
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the graph’s nodes and adopting the intuition that similar nodes will tend to coexist in several of the sampled
sequences.
The two most prominent random walk based methods are DeepWalk [17] and node2vec [7]. The DeepWalk

method samples a number of fixed-length random walks from each graph node which are then supplied as input
to the skip-gram model of the word2vec word embedding technique [15, 16]. The skip-gram model learns vector
representations such that words with a similar meaning in a corpus will end up closer in the embedding space,
while less similar words will end up further apart. DeepWalk intuitively uses a “corpus” of sampled sequences so
that nodes that frequently appear together in a random walk (given a context window of a user-defined size) are
characterized by a small distance in the final embedding.
Node2vec [7] builds upon the core idea of DeepWalk with the main difference being the induction of bias

in the random walk process. In particular, in each transition during a random walk, node2vec adds bias to the
transition probabilities of the node’s neighbors according to two user-defined parameters 𝑝 and 𝑞. Parameter 𝑝
defines the tendency of a random walk to follow a Breadth-First-Search approach, while parameter 𝑞 enables a
Depth-First-Search approach to the random walk.
In this work, we focus on random walk methods and study the utilization of edge weighting strategies as a

means of inducing bias to the random walk generation phase. Edge weighting strategies recalibrate and modify
the edge weights of a graph with the end goal of enhancing a particular downstream analytics task. To the best
of our knowledge, this work constitutes the first attempt at enhancing specifically the community detection
downstream task by utilizing edge weighting strategies that attempt to guide the random walks into having
predominantly members that belong in the same community. The experimental evaluation showcases that, for a
variety of configurations, our approach yields more accurate and coherent community detection results than
those executed on graph embeddings derived from state-of-the-art random walk embedding methods.

2 FRAMEWORK
We begin by providing an outline of the broad framework and the proposed methodology before discussing the
individual edge weighting strategies and their overall rationale.

2.1 Outline
Given an unweighted graph𝐺 = (𝑉 , 𝐸), where𝑉 and 𝐸 correspond to the graph’s node and edge set, respectively,
the objective is to provide a graph embedding that enhances community detection tasks performed by typical
machine learning techniques. Thus, we employ weighting strategies that reweight edges between nodes according
to a perceived likelihood of the nodes belonging to the same community.

Algorithm 1 DetectCommunities(𝐺 , S, 𝑘)
Input: unweighted graph 𝐺 , weighting strategy S, number of communities 𝑘
Output: community designations CD for all nodes in 𝐺
1: 𝐺 ′←WeighGraph(𝐺 , S)
2: 𝐸𝑚𝐺′ ← node2vec(𝐺 ′)
3: CD ← 𝑘-means(𝐸𝑚𝐺′ ,𝑘)
4: return CD

The outline of our framework can be seen in Algorithm 1. Initially, we reweight the graph according to a
weighting strategy S and obtain the weighted graph𝐺 ′. After obtaining the embedding 𝐸𝑚𝐺′ using the node2vec
algorithm we execute the 𝑘-means algorithm on the embedding to obtain community designations for each node
in 𝐺 .
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Note that Algorithm 1 is an indicative description of the overall framework and the implementation details
such as the graph embedding technique (e.g. DeepWalk, node2vec, etc.) or the community detection algorithm
(e.g. 𝑘-means, GMM [2], etc.) may vary depending on the graph domain or the application requirements.

2.2 Edge Weighting Strategies
The majority of the edge weighting strategies presented in this work focus on enhancing algorithms based on
community detection through modularity maximization. Additionally, they attempt to handle the resolution limit
problem [5] that exists in modularity maximization approaches. In the remaining of the section, we use an edge
𝑒𝑖 𝑗 between two nodes 𝑖 and 𝑗 as a running example. The four well-established and effective methods presented
in this work are:

EBC_CNR The “EBC_CNR” method [10] weights a graph’s edges according to two measures: their edge
betweenness centrality (EBC) and common neighbor ratio (CNR). EBC corresponds to the number of
shortest paths that go through 𝑒𝑖 𝑗 while CNR reflects the percentage of common neighbors shared between
nodes 𝑖 and 𝑗 . The exact weight of the edge is contributed by both EBC and CNR through two parameters 𝛼
and 𝛽 that are defined in either a manner that attempts to maximize the variance of the weight distribution
or through heuristics. Thus, the weight𝑊𝑖 𝑗 of 𝑒𝑖 𝑗 is:

𝑊𝑖 𝑗 =


𝑏−𝛼
𝑖 𝑗
·𝐶𝛽

𝑖 𝑗∑
𝑘,𝑚
𝑘≠𝑚

𝑏−𝛼
𝑘𝑚
·𝐶𝛽

𝑘𝑚

if 𝐴𝑖 𝑗 = 1

0 if 𝐴𝑖 𝑗 = 0

where 𝛼, 𝛽 > 0, 𝐴 is the adjacency matrix of the graph, 𝑏𝑖 𝑗 is the normalized EBC of 𝑒𝑖 𝑗 , and 𝐶𝑖 𝑗 is the CNR
between nodes 𝑖 and 𝑗 .

SimRank The “SimRank” approach is based on the SimRank similarity measure [9] which states that “two
objects are similar if they are related to similar objects”. SimRank measures each pair of nodes based on the
structural functionality or purpose they exhibit in the whole graph. Conceptually, in its iterative form the
SimRank measure 𝑆𝑘 (𝑖, 𝑗) between two nodes 𝑖 and 𝑗 in the 𝑘-th iteration of computation is equal to:

𝑆𝑘 (𝑖, 𝑗) = 𝐶 ·

|𝑁 (𝑖) |∑
𝑙=1

|𝑁 ( 𝑗) |∑
𝑚=1

𝑆𝑘−1 (𝑁𝑙 (𝑖) , 𝑁𝑚 ( 𝑗))

|𝑁 (𝑖) | |𝑁 ( 𝑗) |

where 𝑁 (𝑖) corresponds to the neighbor set of 𝑖 , 𝑁𝑙 (𝑖) refers to a particular neighbor 𝑙 of 𝑖 and 𝐶 signifies
a decay constant. Additionally, 𝑆0 (𝑖, 𝑗) = 1 if 𝑖 = 𝑗 and 𝑆0 (𝑖, 𝑗) = 0 otherwise. In the SimRank method, the
weight of an edge in the graph is equal to the SimRank score between the edge’s two endpoints.

𝜅-path The “𝜅-path” method is based on the calculation of the 𝜅-path edge centrality measure [4] along with
additional operations [3]. The 𝜅-path edge centrality measure assigns weights to the edges according to
their centrality and is defined as:

𝐿𝜅
(
𝑒𝑖 𝑗

)
=
∑
𝑠∈𝑉

𝜋𝜅
𝑠

(
𝑒𝑖 𝑗

)
𝜋𝜅
𝑠

with 𝜋𝜅
𝑠

(
𝑒𝑖 𝑗

)
being the number of simple random paths of at most 𝜅 nodes initiating from 𝑠 that pass

through 𝑒𝑖 𝑗 and 𝜋𝜅
𝑠 being the number of simple random paths of at most 𝜅 nodes that originate from 𝑠 .

Finally, the weight between two nodes is set equal to the Euclidean distance of their 𝜅-path centrality
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measures1:

𝑊𝑖 𝑗 =

√√√ 𝑛∑
𝑘=1

(
𝐿𝜅 (𝑒𝑖𝑘 ) − 𝐿𝜅

(
𝑒𝑘 𝑗

) )2
𝑑 (𝑘)

where 𝑑 (𝑘) is the degree of node 𝑘 .
AdaptiveMM Finally, the “AdaptiveMM” approach [14] follows a three step approach to generating weights

for an unweighted graph. At first, an artificial network is generated with ground truth communities and
with topological characteristics that resemble the original graph. This graph is then used as a basis for
extracting a selection of local topological features from each edge such as the difference in clustering
coefficients of the edge’s endpoints or the Adamic-Adar index. In the last step, the edge features are supplied
as input to a regression model that weights the edges in a way that a modularity maximization approach
would be able to efficiently detect the ground truth communities of the artificial network.

Even though our approach is not related to the problem of modularity maximization in its general form, the
methods presented above can be used as intuitive heuristics for the purpose of assigning significant weights to
nodes that could potentially exist in the same community.

3 EXPERIMENTAL EVALUATION
In this section, we conduct experimental evaluation on the framework presented in Section 2 against the baselines
of DeepWalk and node2vec. Since node2vec performed better than DeepWalk in all the experiments, we regard
node2vec as the highest performing baseline. We begin by discussing implementation details before presenting
the results on both synthetic and real-world datasets.

3.1 Implementation Details
Initially, we begin with an unweighted graph that is assigned weights through an edge weighting strategy.
Following that, the graph embedding is obtained using node2vec and the 𝑘-means algorithm is executed to obtain
the final communities.
During the weighting process some existing edges may end up with a zero weight and this may affect the

random walk sampling process in two ways. In the first case, edges with zero weight are assigned a small weight
equal to the smallest weight of the neighbors of the node being traversed divided by their total count. In the
second case, if all the edges of a node’s neighbors have zero weight, then they are all equally probable to be
selected during a random walk.

The parameters used in the node2vec technique are 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 = 128,𝑤𝑎𝑙𝑘_𝑙𝑒𝑛𝑔𝑡ℎ = 80, 𝑛𝑤𝑎𝑙𝑘𝑠 = 10 (number
of walks from each node),𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 = 10. The parameters 𝑝 and 𝑞 were evaluated for each dataset using a
grid search over [0.25, 0.5, 1, 2, 4] as per the suggestions in [7]. In the “𝜅-path” method we set 𝜅 to 20 and in the
“SimRank” method we set𝐶 to 0.8. In the case of “EBC_CNR” the parameters 𝛼 and 𝛽 were evaluated explicitly for
each dataset using the heuristics described in [10]. All of the parameters selected above follow the suggestions of
the authors in their respective original work.

3.2 Synthetic Datasets
We implemented a selection of LFR networks [11] with varying node counts and community sizes, and tested
the performance of our framework for different values of the mixing parameter 𝜇. Table 1 details the synthetic
datasets used where 𝑛 is the number of nodes, 𝑑𝑎 and 𝑑𝑚 are the average and maximum vertex degree, 𝑐𝑚𝑖𝑛 and
𝑐𝑚𝑎𝑥 are the minimum and maximum community sizes, and 𝜇 ∈ {0.25, 0.35, 0.45, 0.55}. The exponent for the
degree power law sequence was 2, while for the community size sequence was 3. In each experiment we measure
1This represents the pairwise proximity between two nodes, due to the definition of 𝐿𝜅

(
𝑒𝑖 𝑗

)
[3].
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Table 1. LFR Datasets

Name n da dm cmin cmax
LFR_1K_5_10_5_15 1K 5 10 5 15
LFR_1K_5_10_15_25 1K 5 10 15 25
LFR_5K_5_10_5_15 5K 5 10 5 15
LFR_5K_5_10_15_25 5K 5 10 15 25

Table 2. Highest improvement for each metric per dataset over node2vec (averaged over ten iterations). All results are
obtained by the “AdaptiveMM” method (except those marked with † which are by the “𝜅-path” method) and their increase is
statistically significant (𝑝 < 0.05) with respect to the results of node2vec.

Name ARI NMI Mod.

LFR_1K_5_10_5_15 +9.5%
(𝜇=0.45)

+1.7%
(𝜇=0.45)

+3.5%
(𝜇=0.55)†

LFR_1K_5_10_15_25 +5.5%
(𝜇=0.35)

+2.2%
(𝜇=0.35)

+3.7%
(𝜇=0.55)†

LFR_5K_5_10_5_15 +13.0%
(𝜇=0.45)

+1.6%
(𝜇=0.45)

+2.5%
(𝜇=0.45)

LFR_5K_5_10_15_25 +15.4%
(𝜇=0.35)

+3.1%
(𝜇=0.35)

+2.5%
(𝜇=0.35)

the Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) measures, along with the graph’s
modularity on the final partition. The ARI and NMI measures are estimated after ten instances of the 𝑘-means
algorithm with different centroid seeds and 𝑘 being equal to the respective’s datasets ground truth communities
count.

Figure 1 presents our results where several observations can be made. “AdaptiveMM” consistently outperforms
the rest of the methods and the baselines, while “DeepWalk” and “SimRank” achieve similar effectiveness, but are
outperformed by the rest of the methods in the majority of the experiments across all measures. The effectiveness
of our framework in the ARI measure increases for graphs with a higher node count. Finally, all methods, except
“SimRank”, achieve higher modularity than the baselines for 𝜇 < 0.5, (i.e. communities with strong connections
where a node has more neighbor nodes inside its’ community than the rest of the graph), while “𝜅-path” achieves
the highest modularity for 𝜇 = 0.55 among all methods. Table 2 summarizes the best results depicted in Figure 1
for each metric in each dataset.

3.3 Real-world Datasets
Complementary to the experiments on synthetic datasets, we also performed experiments on real-world datasets
equipped with ground-truth communities and, more specifically, a product network and two social networks
originating from the SNAP Dataset Collection [12].

The “ego-Facebook” dataset represents a set of social circles in the Facebook social network. Nodes and edges
in this network represent users and friendship relationships between them respectively. The “Amazon” dataset
consists of products found in the Amazon website that are linked if they are frequently bought together. Products
belong in the same ground-truth community if they are characterized by the same product category defined
by Amazon. Similarly to “ego-Facebook”, the “Youtube” dataset contains friendship links between users in the
video-sharing website Youtube. Ground-truth communities correspond to user-formed group communities. Note
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Fig. 1. Results on LFR networks (averaged over ten iterations). From top to bottom, each of the four rows corresponds,
respectively, to: a) LFR_1K_5_10_5_15, b) LFR_1K_5_10_15_25, c) LFR_5K_5_10_5_15, d) LFR_5K_5_10_15_25.

.

that in all three datasets a node may belong to more than one ground-truth community so for the purposes of
this experimental evaluation we restrict each node to one ground-truth community assignment and disregard the
rest of the assignments.Similarly to the synthetic experiments, we set 𝑘 equal to the respective’s datasets ground
truth communities count.
In the “ego-Facebook” dataset we omitted nodes without a community assignment and nodes without any

edges. In the “Amazon” and “Youtube” datasets we focused on the top 5000 communities with highest quality [18]
discarding nodes and edges that were not a member in any of the top 5000 communities while also removing
duplicate communities with completely identical members. Table 3 showcases the resulting real-world datasets
used in the evaluation.
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Table 3. Real-world datasets

Datasets Nodes Edges Communities
ego-Facebook 2.871 62.334 147

Amazon 16.716 48.739 1.229
Youtube 39.841 224.235 4.447

Table 4. Experimental evaluation on real-world datasets. The first number in each cell refers to the mean metric value (over
ten iterations), while the second number to two standard deviations. The best performance in each metric for each dataset is
denoted in bold. Results marked with “∗” provide a statistically significant (𝑝 < 0.05) increase over the results of node2vec.

Dataset ego-Facebook Amazon Youtube
Metric ARI NMI Mod. ARI NMI Mod. ARI NMI Mod.

DeepWalk .311
±.053

.738
±.006

.402
±.075

.530
±.030

.955
±.003

.965
±.003

.066
±.004

.762
±.001

.217
±.002

node2vec .341
±.036

.743
±.005

.433
±.044

.535
±.024

.956
±.001

.967
±.002

.072
±.022

.762
±.001

.214
±.001

EBC_CNR .361
±.056∗

.746
±.005∗

.455
±.074∗

.539
±.018

.956
±.002

.966
±.003

.088
±.014∗

.767
±.001∗

.232
±.003∗

SimRank .332
±.040

.729
±.004

.350
±.032

.540
±.018

.956
±.001

.965
±.002

.078
±.013

.755
±.001

.183
±.002

𝜅-path .285
±.026

.731
±.004

.359
±.037

.560
±.011∗

.957
±.001∗

.967
±.002

.069
±.003

.742
±.001

.150
±.001

AdaptiveMM .306
±.029

.739
±.005

.387
±.018

.561
±.013∗

.958
±.001∗

.967
±.001

.076
±.004

.760
±.001

.184
±.002

Table 4 details the results of the experimental evaluation on the real-world datasets. The two best performing
approaches across all datasets and metrics are “EBC_CNR” and “AdaptiveMM” while in each dataset the best
values for each metric are achieved by the same approach. With the exception of the modularity metric in the
“Amazon” dataset, each metric is increased in a statistically significant (𝑝 < 0.05) improvement by at least one
edge weighting strategy. The highest difference is on the “Youtube” dataset where “EBC_CNR” achieves +8.4%
higher modularity than node2vec while the lowest difference is on the the “Amazon” dataset where “AdaptiveMM”
and node2vec have nearly identical modularity.

4 CONCLUSIONS
The ubiquitous nature of networks and their ease of representation as graphs has led to several graph analytics
tasks that seek to discern information about the characteristics of the network. By mapping graphs into vector
spaces, classical machine learning algorithms can be efficiently applied to gain additional insight about a network’s
features. In this work, we studied random walk graph embedding methods and the influence of edge weighting
strategies in community detection. We used four intuitive state-of-the-art strategies and experimentally demon-
strated that under several settings the utilization of edge weighting strategies can lead to improved performance
according to the ARI, NMI and modularity measures.
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