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Abstract—In this paper, a theoretical link between mixture of the between-class sum of squargs = Zi1ﬁi(ﬂi —
subclass discriminant analysis (MSDA) and restricted Gaussian FA‘)QA"& — ﬂ)T to the within-class sum of squares, =
model is first presented, and then two further discriminant anal- 3 5.3 where. 5. — N;/N . — LZM (x? —
ysis (DA) methods, fractional step MSDA (FSMSDA) and kernel i=1Pisis » Pi F O N fom=17"

MSDA (KMSDA) are proposed. Linking MSDA to an appropriate  £;) (X" — )7, f; = N%Zn;ﬁ?, po= >, pifr; are
Gaussian model allows the derivation of a new DA method under the estimated priorthe sample covariance matrix, the sample
the Expectation Maximization (EM) framework (EM-MSDA), mean, and the total sample mean, respectively. This optimiza-

that derives simultaneously the discriminant subspace as well 4 nroplem turs out to be equivalent to the generalized
as the maximum likelihood estimates. The two other proposed

methods generalize MSDA in order to solve problems inherited €i9€nvalue decompositidh, ¥ = S,, ¥ A, where the columns
from conventional discriminant analysis. FSMSDA solves the Of ¥ are the generalized eigenvectors corresponding to the
subclass separation problem, that is, the situation when the largest generalized eigenvalues in the diagonal makris].
dimensionality of the discriminant subspace is strictly smaller Despite its elegant algebraic formulation, two important
itgadnogéebr;';kn ngtgreo;)r;fztreb\?vtggﬁt?nzuggLaesnsqu(;ar:ge;hrga&{:ﬁé;mz shortcomings of LDA restrict its use in real-world applications:
of an iterative algorithm for preserving useful discriminant @) The LDA criterion cannot be applied directly when the
directions. On the other hand, KMSDA uses the kernel trick Mmatrix S,, is rank-deficient, a situation that occurs frequently
to separate data with nonlinearly separable subclass structure. in many applications involvingmall sample sizéSSS) data.
Extensive experimentation shows that the proposed methods Seyeral methods have been proposed to deal with this problem,
outperform conventional MSDA and other LDA variants. including PCA+LDA [6], MMC LDA [7], dICA [8], and

Index Terms—Feature extraction, discriminant analysis, mix- others. b) LDA faces difficulties in deriving a discriminant
ture of Gaussians, probabilistic algorithms, clustering, pattern g pspace when the classes are not linearly separable (a prob-
recognition, classification, machine learning. | lled h ft l it bl hi

em called hereaftenonlinearity problenp This problem has

been mostly addressed by using kernel extensions of LDA, [9],
[10] or methods that use local linear discriminant analyzers to

In a natural environment, the high dimensional measurkearn the nonlinear data structure [2], [11]. However, the SSS
ment signals, lying in thé’-dimensional measurement spaceproblem remains, and to address it similar solutions to those
usually represent patterns residing in a much lowBr, discussed above are exploited for both the kernel-based [12],
dimensional subspace embedded in the ambient measurenjesit and local-based [14] LDA variants.
space [1]. Dimensionality reduction (DR) is an important com- Another strategy for solving the nonlinearity problem is to
ponent of statistical pattern classifiers that helps to overcom€e a clustering procedure to derive a subclass division of
estimation problems in noisy high-dimensional environmentgie data, and then incorporate this information into the LDA
and thus, often results in improved classifier accuracy as wellterion (again, the SSS problem is handled with techniques
as lower storage and processing time requirements. A fuhat overcome the rank-deficiency &,, e.g. see [15]).
damental DR technique is linear discriminant analysis (LDA)he main advantage of this strategy over the methods de-
[2]-[4]. Given a training set of’ classes andV training obser- scribed in the previous paragraph (especially over the kernel-
vations represented with the block matié= [X,...,X¢], based variants of LDA) is that it offers faster computation
whose i-th block, X; = [x},...,x]], consists of theN; times during testing, because it only involves a single matrix
observations € RF of thei-th class, this method derives amultiplication. This is the underlying principle of mixture
discriminant subspace spanned by the column vectors of digcriminant analysis (MDA) [16] that utilizes the following
transformation matrix® € R that maximizes the ratio  criterion

I. INTRODUCTION

Tipa(¥) = tr(¥'S,¥)/ tr(¥'S, ¥) (1) Tyupa(®) = tr(7S,, W)/ tr(¥7S,,,¥),  (2)
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obsenations of diferent classes, a better choice is to definénearly separable subclasses is identified. If this is not possi-
a discriminant metric that favors the scatter of means blele, a subclass-based approach that can deal with nonlinearly
tween subclasses of different classes. This idea is exploitgparable subclasses is desirable, often using an appropriate
in subclass discriminant analysis (SDA) [17] that defines thernel to map the nonlinearly separable subclass divisions into

following criterion a new space where they are linearly separable. For instance,
. - in [32], [33] the kernel SDA (KSDA) method was shown to
Jspa (W) = tr(¥" Spsp ¥)/ tr(¥" ZxP), @) outperform a number of other approaches including kernel
- p A A discriminant analysis (KDA) [9] and kernel support vector
where Sy, = Zic—ll Zfl=1 Zf:i—&-l leikl pi,jpk,l(ﬂi,j - Y ( ) [9] PP

N L T iy . machines (KSVM) [34].
P (fri,j — f,)" 1S the inter-between-subclass scatter ma Inspired from the above discussion, in this paper we first

trix, representing the scatter between the means of subclasses

. . rgvide an explicit link between MSDA and an appropri-
of dlfferentcclasses (|]r\1]ter-subclass scatter of means), ar\}e Gaussian model, which allows the derivation of a new
H; i ~ ~ : y
EX = N e 2im1 2on=1 (X0 — ) (] — )" is the total

. - DA method under the Expectation Maximization framework
covariancematrix.

. 5 _o=(EM-MSDA). Furthermore, we present two additional meth-
Several extensions of MDA [18]-{21], and SDA [22] [25]0ds, fractional-step MSDA (FSMSDA) and kernel MSDA

have been proposed, mainly seeking a more effective subc%f SDA), to alleviate the subclass separation problem of

partltlo_nmg procec_iure. In [26], mlxture_sgbclass _dlscrlmlna SDA and to handle cases where MSDA subclasses are not
analysis (MSDA) is presented, where it is explained that the :
use of the criterion lihearly separable, respectively.
The rest of the paper is structured as follows: In Section Il
Tnrspa(®) = tr(W7S,,, W)/ tr(TT Sy W) (4) alink between MSDA and a Gaussian model is provided and
5 EM-MSDA is derived, while in Sections Ill and IV, FSMSDA
where, ¥x = Sps, + Sus, IS @ better choice than the SDAand KMSDA are presented. In Section V experimental results
criterion (3). Moreover, this algorithm assumes that the daéte reported and Section VI concludes the paper.
have a Gaussian homoscedastic subclass structure and intro-
dgces an appro.prigte sybc;lass part'itioning procedurg .al.ong II. LINKTO GAUSSIAN MODEL
with a nongaussianity criterion to derive the subclass division _ ) . _ _ .
that optimizes the MSDA criterion. In [26], it was shown In this section, we initially provide a Gaussian mixtures
that in most cases MSDA outperforms SDA and other I_D)g\nodel formulation of the classification task, and then show
variants. However, as we explain in the following, there is stifloV the Expectation Maximization (EM) algorithm [35]-[37]

room for further improving dimensionality reduction along th&a" be apF_’"ed to estimate the.unknown qugl parameters.
following directions: Through this treatment we provide an explicit link between

1) Link to Gaussian modelin [16], [27], [28], it was MSDA and the described Gaussian model, and consequently

shown that the LDA and MDA subspaces (defined by th%enve the EM-MSDA algorithm.

column vectors of the respective projection matrix) coincide

with the subspace that maximizes the log-likelihood functiof. Gaussian mixtures model

of Gaussian class densities or Gaussian mixture class densitieget ., ... we be a finite set of” states of nature (classes)
respectively, under the assumption that all class densities {fy (x, V) be ant x I-valued random pair, whet& c RF
mixture component densities) are homoscedastic and thatjglihe space of observations afd = {1,...,CY} is the class
class discriminant information is confined infadimensional ingicator variable [2], [3], [38]. Under this framework we
subspace of thet™-dimensional measurement space. A Tnodel thei-th class-conditional probability density function
spective link between MSDA (or SDA) and an appropriatfy|.,) as a multivariate Gaussian mixture density &f

Gaussian model has not yet been provided in the literatuggmponent densities where the mixture components along all
and such a link could lead to a new DR approach. classes are homoscedastic [16], i.e.

2) Subclass separation problervhen the dimensionality .
of the LDA subspace is strictly lower than the rank of the -
between-class matrix, i.el) < C — 1, the projection of p(xlwi) = Zm’ﬂv(x'“i’j) ’ ®)
the class densities to the discriminant subspace may smear =t
the neighboring classes in the measurement space, a situatiiere, \'(x|p; ;) = (1) /2|82 exp((—1/2) A(x, p, ;)
described as the class-separation problem [29]-[31]. The saisi¢he j-th component density (subclass) of théh mixture
problem can equivalently occur to MSDA (and other subclasgth constantr ~ 6.283185..., nonnegative mixing coeffi-
variants of LDA), i.e., neighboring subclasses in the originaient r; ; (satisfying Zf:il m;,; = 1), mean vecton, ; and
feature space may overlap in the projection subspace when ¢beariance matrix3 shared along all mixture components.
MSDA subspace dimensionality is strictly lower than the ranMoreover, A(x, p; ;) = (x — ui7j)TE—1(x — p; ;) is the
of the inter-between-subclass scatter matrix. We refer to thi#ahalanobis distance between observatiorand the j-th
situation as the subclass separation problem. component of class.

3) Subclass nonlinearity problenMSDA (and other sub- We then wish to obtain aD < F-dimensionality re-
class variants of LDA) can resolve the problem of nonlineariyuction of the data which favors the separability of those
separable classes as long as a subclass division that resulsulrclasses that correspond to different classes. Consequently,
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the parameter vectorof the presented model is formed 1) ConstrainedM: We wish to impose two constraints on

as@ = [mi1,p] 1, TCHe M g, VeAE)T, veq®)T]T,  the values of the true means as we explain in the following.

where & ¢ RF*P s the required projection matrix for Firstly, we require that the discriminant information is confined

mapping the data into the reduced subspdcés the vector in a D-dimensional subspace of the originAtdimensional

transposition operator, and the yoperator stacks the matrix measurement space (e.g., see p. 339 [27], [16], [28]). Under

columns to a vector. this restriction the mean of thgth mixture component of the
i-th class density is expressed as

B. Log-likelihood function Kij =, + EWV; ; ©)

For the estimation of the unknown paramet@rsve resort where, ¥ ¢ RF*P is a singular transformation matrix with
to the EM algorithm. The EM algorithm is based on thencorrelated column vectors that transforfsinto the unit
interpretation of the observed data €t of i-th class as matrix
incomplete, where the missing part is a correspondin@.set vIyw =1, (20)
[z},...,2Y"] of categorical vectors! = (2815 .,z{in]T, in
which only a particular element, equals to 1, indicating ' . | X .
that x was produced from thes-th component (subclass)'nto the Iower—d|m§n5|onal su?space. The latter |s'clear if we
of the i-th mixture density. Under the above formulation anffarrange (9) to yield;; = ¥~ (u; ; — p,). In matrix form

assuming that the’ data matrices (blocks) of the block matrix(9) can be written as

i, is the total mean, and; ; € R” is the projection ofu; ;

X (Section 1) are independent as well as that the column M=M,+S¥Y (11)
vectors of thei-th block constitute a random sample from the ) )
population with density(x|w;) (i.e., all observation vectors Where,M now is of column rankD, M, = [p,, .- -, ft,] 1S
are independent and identically distributed (i.i.d.)), the loghe £ < H matrix whose column vectors equal to the total
likelihood function £; of the complete dataset would beM€@ni,, and Y = [v1,...,ve mc] is the matrix with the
(similar to [16], [27] — see Appendix A-A) projection coefficients of the mean vectors.

Secondly, we wish to penalize (6) such that in the lower
- _,. dimensional subspace the between-subclass spread is empha-
201 = ) 2N;;lum; — NFln@2r) + NIn(det £7')  gzed relative to the within-subclass spread. We can impose
i=1j=1 this by penalizing (6) with the termr{YQY7T}. The penalty

C H;

Cc H;
o /e 1o matrix Q is defined as
—Z Ni,j(Xi,j —Nz‘,j)TZ 1(Xi,j —Hi,j) Q
i=1 j=1 — 1N —
St ~Q NA~ N-N (12)
-> R (xP — %) TS THXD — %4 ), where N = diag(Ny1,...,No.g,,) is an H x H diagonal
i=1n=1j=1 matrix with diagonal elements the effective sample numbers

(6) of the respective mixture componem,is a symmetric matrix

whereh;; are the responsibilities, i.e., the expected values §fat allows us to express the weighted inter-between-subclass
the categorical variables?; for each data point, given by gcatter matrix

hi'; =E[z;] = = i (1) Spw = Pi P (Rij — Xia) (Xig — Xet) "
2,7 i,] H;, - nl~ ) bsb 2,7 s 2y s 1,7 s ’
ijl Wi,jN(Xi |/1'1',,j) i=1 j=1k=i+1 I=1

_ - N ~ N, (13)
andx;; = (1/Nij) >, L1 hiyxit, Nij = 32,2, hi; arethe in a matrix product form,
weighted sample mean and the effective number of points of w S
the j-th corl?porjent of the-th mixture respectively (note from bsb = XAXT, (14)
(7) that) 3=, N;; = N;). Moreover,In§ anddet A denote and X = [x,,,...,%c .| is the matrix of the weighted

matrix A, respectively. We can rewrite (6) more compactly, %;; andx;, weighted means takes the value

as
c H ﬁi,j(l _ﬁi)v if (17.7) = (kal)v
Lo L Aiiri=4{ 0 ifi=k,j#l (15)
= — C(xs o —qp. T 1 T i,5.k,l »J ’
2L, = ¢ ;;N’L,J(X’L,] l‘l’z7]) b (X’L,j l‘l’z,]) _ﬁi,jﬁk,l else
= (—tr{NX-MTS (X -M)} (8) wherep;; = Nij/N, p; = S0 pi; = Ni/N. Notice

that the sum of the components of any row vector (or any
where( is the part of the Iog—IikelpoodJunctjon that is in-column vector) of matrixA equals to zero. Therefore, for
dependent of the true means£(y_;_; >/~ 2NVi ;Inmi; —  any matrix with equal column vectolB = [b,...,b] the
NFIn(27) + NIn(det 1) — Zic:1 ZRNLI Zf;l h;(xi —  matrix productAB” will yield the zero matrix. We should
% ;) NP — %)), andM = [p,,,..., ko p,), X = also note thatQ is symmetric and that forA = N, Q
[X11,...,Xc,H.] are the matrices of true means and weighteghd consequently the penalty term vanish, leading to the

sample means respectively. conventional MDA algorithm [16]. As we will explain in the
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sequel such a specializatioaf the penalty matrixQ will lead  Setting 7, ; = 271/2%;;, v;; = ﬁ:_l/Q;Li,j, andv, =
to an interesting extension of the MDA algorithm that willﬁ;—l/Quo, we can writev; ; = v, + ‘i’vi,j or in matrix form
provide a subspace equivalent to the MSDA subspace. .

2) Constraineds: Similarly to MDA with centroid shrink- V=V,+9¥Y (21)
ing (p.171, [16]) we constrain the covariance matrix at ﬂ\ﬁhere\Il Ry, Y = 5

12X = [y14,....¥
weighted within-subclass scatter matrix Y11, Yencl,

V = X712M = [vi4,...,ven.], andV, = 712M,,
Substituting this to (20) we arrive to

2 _ Sw Z Zpl’] Ew c m
XC: [ ./1 (16) L3 = Z Z Nij(¥i5 = Vi)' (Fig — Vi)

(x}P = i) (X — % )", i=1j=1
where 3, = (1/Nz',j)2 hp (X — % ) (%) — % 5)T is

i Mm
[ M?

= tr{N(Y - V)" (Y = V)} + tr{TQY"} (22
=tr{N(Y -V, —o1)T(Y -V, - ¥7T)}

n % T
the weighted sample covailan]ce matrix @f j) component e {YQY "}
density. Setting the derivatives ofZ3 in (22) with respect to the
Imposing the above constraints (10), (11), (16), and thpgojection coefficientSX to zero we obtain
penalty term (12) in (8), we finally arrive to the following OLs o
penalized and restricted version of the log-likelihood function T 0=>"Y=v"(Y -V, AN"! (23)

2Ly = — tr{N(X - M, — Z¥Y)"E71(X — M, — S¥Y)} we cannow expand (22) as
—tr{TQ'rT} + ¢, ~ _
17 L3 = t{NY-Y,+Y,-V,—-o1)7

where ¥ is constrained by (10). (Y = Yot Yo—V,— \ilT)} +tr{rQYT}
= tr{N(Y -Y,)T(Y -Y,)}
+tr{N(Y, — V)T (Y, — V,)}
+tr{NYTeT oY} + tr{rQY”}

C. EM algorithm

The EM algorithm can be applied to obtain the maximum
likelihood estimate (MLE) of the model parameters in (17).

This algorithm alternates between two steps, the Expectation +2tr{N(Y = Y,)" (Y, — V,)}
step (E-step) and the Maximization step (M-step), to produce —2tr{N(Y = V) T@&T} (24)
a sequence of estimates until some convergence criterion is
met. Reformulating the fifth term of (24) we see that it vanishes
t'f'lzj E-stt(:]p: Durir_lg tht;l\li-stepl, the paran;e;er valuest id(:-r?— tr{N(Y Y ) (Yo —V,)} 25)
ified in the previous cycle are used to compute the

- d P = 2 L Mo (3 = ¥0) (%0 = vo) = 0,

responsibilitiesh’ ; using (7).
2) M-step: In this step, the unknown mixture parametergjsing (12), (23) and taking into account tha@”®& =

are estimated by maximizing (17). In particular, we need @739 — I the summand of the third and forth term of (24)
estimate the mixing coefficients; ; and the true meang; ; pecomes

for each mixture component in (5). T -
Estimation ofr; ;: The mixing coefficients are estimated by tr{NY" Y} + t;{TQT } T
maximizing (17) subject to the constraint the};", m; ; = 1, =tr{Y(N+Q)Y"} = tr{YNAT'NY"}  (26)

giving (similarly to [37] — see Appendix A-B) = tr{A(Y = V)T ¥ ¥ (Y - V,)}
N,j and similarly using (23) the sixth term of (24) becomes
fri; = —2L. (18) _ .
TN tr{N(Y — V,)T¥&T} 7
Estimationof y, ;: Now we proceed to estimating the true = tr{A(Y - V,)T®P®T (Y - V,)}
means inM, or equivalentlyM,, Y, and ¥, that maximize
(17) subject tob 7S W = 1. In (17)¢ is independent oM and Substituting (25), (26), (27) into (24) we arrive to
thus can be Q|s_car(.jed fron_1 the 9pt|m|zat|on ane.rlo_n. More- Ls = t{N(Y-Y,)"(Y-Y,)}
over, the maximization of is equivalent to the minimization e {N(Y, = V)T(Y, — V)
of —L- under the same conditions, leading us to the following 8 _e "T . ~0T ¢
optimization problem —tr{A(Y = V)" ¥¥' (Y - V,)} (28)
argmin L3 subject to ¥TSW =1, (19) Using the fact thaAV = 0, the last term of (28) is simplified
M,, Y, ¥ to
where, tr{A(Y — V)T EET(Y — V,)} = tr{AYTSBTY)
Ls=tr{N(X -M, -Z¢1)TE (X - M, - Z¥T)} +tr{AVIOO®TV,} - 2tr{AVI G BTY}
+tr{rQY’}. = tr{AYT 9 PTY},
(20) (29)
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and substituting this baclko (28) we arrive to iterative process is repeated until the nongaussianity measure
L3 =tr{N(Y - Y,)T(Y - Y,)} L0 ;inverges todaksmall .value zs expljlined in 't;e foII'ovC\i/.ing.'
T =T AT ewness and kurtosis can be used to provide an indication
FE{N(Yo = Vo) (Yo = Vo)) — tr{TYAY \II}(’SO of how well a particular Gaussian mixture density fits the
where, Y, = 3-1/2X,, and X, is the F' x H matrix training data of a specific class [26], [39], [40]. Estimates
whose column vectors equal to the weighted megn = of the weighted standardized skewneSs;; and kurtosis
(1/N) Zle Z]'Hzil Zﬁf;l B ox? — ZiC:1 S i, We  Yidd along the f-th dimension regarding thg-th mixture

i.5% r .
now have to minimize (30) with respect 16, or equivalently component of the-th class can be computed as follows

1 N; n no 5o )\3
tr{N(Yo_Vo)T(Yo_Vo)} = N(YO_V0>T(YO_VO) (31) B = Nij 2”21 hiaj (xi,j-,f M“J’f) 37)
1,5,f = ~3 )
which is minimized fory, = v, and, thus, yieldingx, = x, T f
or in matrix form ) ) N1 '_ SN (s — fiig.g)t
M, = X, . (32) Yig.g = = T -3, (39
1,7,

Without loss of generality we can sg&t, = [0,...,0]" (e.g.
settingX «— X —X,). Substituting this back to (30) we arrive
to

wherezy, ; is the f-th elementof x7;, and i; ; ¢, 6; ;5 are

the sample mean and standard deviation ofjtiie mixture of

i-th class along th¢-th dimension. The above estimates will
be close to zero for Gaussian densities and deviate from zero
where we have used the requirement tlattransforms the the more the underlying density deviates from the Gaussian.
pooled covariance matriX into the unit matrix (¥’ % = I). We can thus obtain an estimate of the skewndss and

In (33) only the second term depends on the transformatiknrtosisy; ; of the (i, j) component density by averaging along
matrix, and, thus, this matrix can be obtained by solving tel dimensions, i.e.;3;; = (1/F) Zle Bijifl s g =
following optimization problem (1/F) Y71 [4.,.¢|, wherea| denotes absolute value of

argmax tr{®7SY, ¥} subject to ¥TSY W =1 (34) Similarly, we can define a pongaus;ianity measure regarding
N7 the Gaussian mixture density referring to th#h class using

Ly =tr{Z'XNXT} — tr{®TXAXT®}  (33)

where we have used (14) and fixad according to (16). H; .

The solution to this problem is obtained by the $et;|i = O = 7 i (Big + i) - (39)

1,...,D} of the generalized eigenvectors 8f,, and S}, i=1

corresponding to thé largest eigenvalueg\;|i = 1,..., D} A large value of®; will denote that the respective Gaussian

of the following generalized eigenvalue decomposition [2] mixture density does not fit well the underlying density
SY, W =S¥ WA (35 functi'on of' the i-th clags training data. Therefqre, at each

iteration this measure is used to select the mixture density

where A = diag(A1,...,Ap). Therefore, the subspace thathat yielded the worst fit according to the following criterion

maximizes the constrained log-likelihood function in (19) at

each EM cycle coincides with the subspace that maximizes the k = argmax(®;), (40)

=1

goos

MSDA criterion, where the scatter matrices in (4) are replaced ) ) )
by their weighted equivalent in each EM cycle. The MLE ofnd the required number of mixture components referring to
the true means can now be computed by substituting (23), (32} mixture density is increased by one (H- Hj + 1).

into (11) and using the computed estimates of (16), (35) féMmilarly, at each iteration a total nongaussianity measure is
S.s and ¥ respectively defined for assessing the fitness of the current Gaussian model

. _ with respect to the overall training data set
M = X,+S %P (X - X,)AN"! B
= SY ¥P'XAN! (36) o= 5. (41)
i=1

where, we have assumed thét = 0.
The value of® is examined at each iteration, and the iterative
D. Model selection procedure is completed upon the convergence tf a steady-

. . .stafe solution. The resulting EM-MSDA algorithm is outlined
The Gaussian model described above as well as the derive . . o Lo
|{% Igorithm 1. Alternatively, a cross-validation criterion can

EM algorithm assume that the n_um_ber of mixing componenbe used to select the Gaussian model that provides the best
in each Gaussian mixture density is provided. However, this

information is rarely known. In order to estimate the opti(_amp|r|cal recognition rate.
mum number of mixing components for each mixture density

with respect to the given training set, we utilize an iterative Ill. FRACTIONAL STEP MIXTURE SUBCLASS

procedure, where at each iteration a new Gaussian model is DISCRIMINANT ANALYSIS

specified (with respect to the number of mixture components)In equivalence to the class separation problem of LDA [29]-
and a nongaussianity measures evaluated in order to asses$31], the subclass separation problem may occur when the

the goodness of fit of the particular Gaussian model. Thimensionality of the MSDA subspac® is strictly lower
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Algorithm 1 EM-MSDA utilizes the following objective function
Input: Annotated data seX T&
tr(U* Spep ¥

Output: ¥ Jrnmspa(®) = w (42)

1: Initialize: Hy = -+ = He =1, H = C, ®; (39), & (41) tr(T3ExP)

2: repeat where the inter-between-subclasscattermatrix is modified

3. Compute class labé! of class to repartition (40) using an appropriate weighting functias ; . ;

4: Set:Hp «— Hp +1 . C—1 H; C Hy

5. Repartitionk-th class toH,, subclasses using k-meansSpes = > > > > wi k(b — thyg) (i y — )"

6: Initialize the MLE parameteré i=1 j=1k=i+1 I=1

7. repeat 3 . _ . (43)

s E-step Compute responsibilitiea? ; (7) and the modified covariance matrix accordingly becomes

. ,J S & . . . . .

9: M-step: Compute MLEs® (35), 6 (16), (36) ?x = Sb_sb +fSws. _The(;/vi_lgh;mg functlorl|sda_£nonotohn|cally
10:  until convergence of ecreasing function g ined a8, 1 = d;j,, where,
11:  Compute nongaussianiyy; for each class (39) dijjri = [|pi; — pegll” is the euclidian distance between

the estimated means of subclasses)(and (%, ), andr is an
integer number larger than two.

The FMSDA algorithm (Algorithm 2) starts with the ap-
plication of the subclass partitioning procedure described in
the previous section (Egs. (37) to (41)) to derive a subclass
than the rank of the inter-between-subclass scatter matrigjyision of the data. Then, the FMSDA criterion (42) is utilized
(D < rank(Sps) < min(F, H — 1)). When this happens, tq initialize the projection transformation matn,, € R¥*2,
distinct subclasses in the measurement space may not sepgja¢ean iterative algorithm is applied, where at each iteragion
well in the lower dimensional subspace. To demonstrate thigctional steps are used for decreasing the dimensionality of
problem we use an artificial dataset of two classes, where, the subspace by one. That is, at then fractional step of the
first class consists of two Gaussian subclagges, V12, and  j.-th jteration the data are projected in theth dimensional
the second class is a unimodal Gausshéy,. The means of subspace using the transformation matfix ¢ R **, scaled

the Gaussian distributions aye , = [6 22]", ; , = [00]", ytilizing the following scaling transformation
Koy = [12 22]7, whereas a common covariance matrix is {

12:  Compute total nongaussianify (41)
13: until convergence of®

atyiv =k

shared along all distribution® = [0.7 0.3 ; 0.3 0.7], as Iy, t) = v i1 b1

depicted in Figure 1. Under these settings, we see that the one- .
dimensional projection transformation derived using MSDA/herea = exp(—1In(p)/(p — 1)), and the transformation ma-

(Y 1r15p4) CaUSES a large overlap between the subclasgs trix Wi is regomput.ed using the projected anq scaled data. At
and A1, which are close to each other, but well separaté@e end of this fractional procedure the ldsth eigenvector of

in the measurement space. This happens because the |§fge(|.e., the one that Corresponds to the smallest EIgenvalue
subclass distancé; 201 = ||, 5 — 15 ,]|? dominates the Of ¥i) is discarded. The scaling transformation compresses
MSDA criterion, and, thus, the derived projection transformdbe data along the direction of the last eigenvectordof.

tion preserves well the separation of the subclagées and This allows the subclass means that are along the direction
Na.1, while, on the other hand, merges the two subclasses tRhtthe k-th eigenvector to be increasingly weighted in the

are close together in the measurement Sp&ﬁgy and/\/’2 1. next fractional Step, CaUSing thie-dimensional Subspace to
' reorient so that a useful projection direction is not discarded

(44)

a0l at the end of each iteration. A validation set is used to
a5l assess the performance of the derived projection mamix
at each iteration, and the one that provided the best correct
30r classification rate (CCR) is selected.
251 /‘ The main advantage of FMSDA (and also EM-MSDA)
a0l ” \PFMSDA over kern_el variant_s of LDA is that_ the prpjection matr_ix
= still constitutes a linear transformation, which can provide
180 ™ real time performance during the testing stage. On the other
10} ¥ s hand, in contrast to EM-MSDA that tends to optimize the fit
5l + Xi1 of the subclasses and simultaneously seek the projection that
~ X12 maximizes the inter-subclass scatter of means, FMSDA derives
o '* o Xaq an initial subclass structure of the data and gradually attempts
ST 5 m o 20 20 to ider?t.ify the subspace that provides the best empirical
% recognition rate.
Fig. 1. Subclass separatioproblem. IV. KERNEL MIXTURE SUBCLASS DISCRIMINANT
ANALYSIS

To overcome the subclass separation problem, inspired fronirhe methods described in the previous sections will still
[31], we introduce the fractional-step MSDA (FMSDA) thahot perform well when it is not possible to identify a sub-
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AIgorithm 2 FMSDA is used [9]
Input: Annotated selX, validationsetG, parameterg, r
Ouput. ° i BOX X 0) = S0, D0 (46)
1: Initialize: H; =---=Hec =1, H=C, ®; (39), ® (41) Under mild conditions, any solution 3V must lie in the span
2: repeat of all the training samples [9], and, thus, it can be represented
3:  Compute class labdl of class to repartition (40) by a linear combination of the training samples as
4: SetHy «+— Hjy + 1 and repartitionk-th class
5.  Compute nongaussianity valués (39) and® (41) W=2&X)r (47)
6: until convergence of § where ®(X) = [¢(x! ), .. ,7¢(xg§£0)} andT € RV*C-1
7. ComputeW p (42), setD = rank(Ssp) (43) contains the expansion coefficients. Substituting (47) into
8 Set CCR =0,k=1,...,D (45) and multiplying from the left with®(X)” we get
o: for k=D to 1l do ®7(X)S?,@(X)T = &7 (X)L ®(X)TA? or
100 fort=0top—1 do i Sk A
11: Project training datay = ¥7x Spspl' = ExT'A (48)
12: Apply scaling transformationy = Iy, t) where we set slgsb — q)T(X)sZ’sb@(X), Sk, =
13: ComputeW (42) using scaled data ®T(X)S¢ . ®(X), and X% = SF, + Sk _. The mean and
14: Set: Wy, — ¥, ¥ sample covariance matrix of th@,j) subclass inF can
15: end for be written in matrix product form ag!, = ®(X;;)p;;
16:  Discard the last (#h) column of @, . andx?. = (1/N;;)®(X, ;)1 — P, ;)®T (X, ;) respectively,
17:  Project and classify validation samples usiirg Where,f)ij is alV; ; x 1 vector andP; Jis aN;j x N, ; matrix
18:  if sampleg; is classified correctlyhen with all elements equal t/N; ;. Using the above expressions,
19: C(_:Rk ++ the scatter matrices in (48) can be entirely expressed by the
20 end if kernel functions as follows
21: end for c.1H C H
22: Set: k, = argmax;, (CCR,); ¥ = ¥, S]lfsb _ Z Z Z Zpi,jpk,l(Ki,jpi,j — Kiipry)
=1 j=1k=i+1 =1
X (K jpij — Kipra)' (49)
classdivision thatresultsin linearly separable classes [32], Cc H,
[33]. To deal with such cases, a nonlinear feature mapping;ij}s — %ZZKH(I’ Pivj)KZ:j (50)

¢(-) : RF — F can be used to map the partitioned data i=1j=1
into some high- or even infinite-dimensional feature space

L. — T L L. NXN,;’]’
where the data are expected to be linearly separable. Giv where, K., o (X)2(X;;), K;; € R , and,

e{hf’i‘s,l‘ can be easilycomputedfrom (48) using only kernel

;defss 1part|t|on1\<[3ifj the df@ :ﬂgxl’lb’ . ’{SC’HC]’]C \:vhere evaluations. The derivell can then be used for the projection
ig = [Xigoo ' Xi ] contains the observations of he 0 of a test samplep(x) in the discriminant subspace using
subclass, the transformation matr® that maximizes the
MSDA criterion in F can be computed from the following z=W"¢(x)=T"k (51)
generalized eigenvalue problem whgre}( _ [k(xil,x)7...,k(xgilzc,x)]T and z is the
stbw — il;‘éWA“" (45) prOJectlon.of¢(x). N o 3

The optimal subclass partition of the data is identified by ex-

where, ploiting the nongaussianity-based iterative algorithm described

in Algorithms 1 and 2. Consequently, the KMSDA algorithm
" © N TN .o ¢ is presented in Algorithm 3. In certain cases, KMSDA may
Sesp = 2 D D bigbralinly — )AL — )" provide superior performance in comparison to EM-MSDA
and FMSDA, however, at the cost of much higher computation
c time during both the training and testing stage, especially
ng _ stb +8% S?. = Z Zﬁi,jifja when large-scale trammg_ data sets are used (due to the Ia_rge
- number of kernel evaluations for mapping the observations in
the kernel space, and the associated computational burden of
are the inter-between-subclass scatter matrix, the withierforming eigenanalysis in this space).
subclass scatter matrix, the modified total sample covariance

i=1 j=1

i 3 Nij n y n
matrix, and®? ; = (1/N; ;) %F;(q&(xi,j) — ) (B(xr) — V. EXPERIMENTS
ﬂfj)T, ;lfjj = (1/Nij) >, ¢(x};) are the sample co- In this section, we use 12 standard benchmarks (defining

variance matrix and the sample mean(6fj) subclass inF in total 19 classification tasks) to compare the proposed
respectively. To avoid working with the mapped data explicitlglgorithms, EM-MSDA, FMSDA and KMSDA, with various
(which may be impossible in case of infinite dimensiondinear and nonlinear methods, in particular with PCA [41],
feature spaceF) a kernel function formulated as an innel.DA [6], FDA [30], MDA [16], SMDA [21], SDA [17],
product in the feature space satisfying the Mercer’s conditiddSDA [26], KDA [9] and KSDA [33].
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Algorithm 3 KMSDA is used for event recognition experiments. It consists of 492
Input: Annotated data seX shots belonging to one of five different sport events (baseball,
Output: T’ basketball, football, golf, soccer). Each shot is represented
1: Initialize: Hy =---=He =1, H=C, ®; (39), ® (41) Dby a 101-dimensional vector, where theth component of
2: repeat this vector is in the rangd0; 1], expressing the degree of
3:  Compute class labél of class to repartition (40) confidence that the:-th concept (out of 101 concepts) is
4. Set:Hp «— Hp+1 present in the shot [45]. These values are the output of SVM-
5:  Repartitionk-th class tofd;, subclasses using k-meansbased automatic concept detectors, thus represent highly-noisy
6: Computed; (39) and total nongaussianity (41) data.
7: until convergence ofp Datasets 7-10: Four face datasets were used in our ex-
8: ComputeI (48) periments. The Sheffield face database [46] offers 575 gray-

scale cropped facial images of 20 individuals, shown in a
range of poses from profile to frontal views. The AT&T
Database of Faces [47] contains 400 facial images of 40
individuals captured at different times, with varying lighting
For theevaluation we use four datasets that belong to thgngitions, facial expressions, etc. The Extended Yale B
UCI repository [42], two datasets from the Gunnaitéth's (ExiyaleB) database [48] offers 2432 gray-scale cropped facial
Benchmark Datasets [43], and six datasets that have bg§@Rges of 38 individuals under 64 illumination conditions.
widely used for face, object and video shot detection: The CMU Pose, Illumination, and Expression (PIE) database
Dataset 1: The Monk problem [42] is based on an artificigho] is a collection of more than 40,000 facial images of 68
dataset of 432 data points S . Three binary classification people captured across 13 different poses, under 43 different
tasks have been defined, i.e., MONK1, MONK2 and MONK3jjymination conditions, and with four different expressions.
For each task, a portion of the data has been randomly selegtgd the Sheffield database, we downscaled the facial images
for forming the training set, and all 432 samples are used @ssjze 32 x 32 pixels resolution using bicubic interpolation,
the test set. In addition, in the third tasko of the training and scanned them columnwise to retrieve a set of 575 feature
data have been annotated wrongly in order to simulate thectors inR!92%, For the rest of the face databases we used
effect of random noise contaminating the data. the preprocessed2 x 32 pixels resolution facial image sets
Dataset 2: The Landsat data set (LSD) consists of 6 clasggshe Four Face database collection [50], [51].
(red soil, cotton crop, grey soil, damp grey soil, soil with Dataset 11: The Banana set [52] is a binary class dataset
vegetation stubble, and very damp grey soil) and 6435 featwensisting of 5300 samples iR>. It is an artificial dataset
vectors inN3%. A partition of the dataset to training set (443%reated using a mixture of overlapping Gaussians.
samples) and test set (2000 samples) is already provided imataset 12: The Breast Cancer dataset [52] is a two-class
[42]. dataset containing samples of 277 patient®Rfh (excluding
Dataset 3: The Wisconsin diagnostic breast cancer (WDBfBe nine samples that contain unknown attribute values).
dataset [42] is used for the recognition of benign and malignant
cells from diagnostic images. This database comprises 589 Evaluation
diagnostic images representedRA’. A division of the datasets described in the previous sub-
Dataset 4: The multi-feature digit dataset (MDD) [42kection to training and test sets is necessary in order to
consists of ten classes and 200 patterns per class, i.e. 2,808uate the proposed algorithms. Such a division is provided
patterns in total, where each class represents one handwrii&ghg with the data for Monk and LSD. For Banana and
numeral (“0"-“9”). Each pattern is represented in terms of Breast Cancer, we used 50 random realizations for training/test
feature sets, extracted fronB&x 48 binary image, as follows: sets for each dataset from the Gunnait$eh's benchmark
a) MDD-pix: 240 pixel averages i x 3 windows, b) MDD-  collection [52]. Similarly, for AT&T, ExtYaleB and PIE, 30
fou: 76 Fourier coefficients of the character shapes, ¢) MDPandom realizations from the Four Face database collection
fac: 216 profile correlations, d) MDD-kar: 64 Karhunenéve [50], [51] were used, where the training set at each realization
coefficients, e) MDD-zer: 47 Zernike moments, f) MDD-contains 10 images per subject for ExtYaleB and PIE, and
mor: 6 morphological features. Each set of features defin@Smages per subject for AT&T. For each of the remaining
a separate classification task. datasets, we divided them following standard practices in
Dataset 5: The ETH80 database [44] consists of 8 obimilar works of the literature, e.g. [17], [33]. In particular,
ject classes, namely, apples, pears, cars, cows, horses, dagshave designed cross-validation (CV) folds by selecting
tomatoes, and cups. Each class contains color images ofrdAdomly=% of the samples of each class at each fold to form
different objects recorded from 41 different views spacetle test set, and used the rest of the samples as the training
evenly over the upper viewing hemisphere, i.e., the databasgg. The number of folds and the percentage of test samples
contains 3280 images in total. In our computations the classi®o for WDBC, MDD, ETH-80, Sheffield, and Mediamill
COIL segmentation masks 028 x 128 pixels size provided in dataset were set t@, @) = (1,50), (5, 50), (10, 10), (30, 60)
[44] are employed, resized & x 30 pixels size and scannedand (30, 20) respectively.
column-wise to formr50-dimensional feature vectors. The optimal parameters of each method at each CV fold are
Dataset 6: A subset of the MediaMill Challenge datasselected using as primary metric the correct classification rate

A. Datasets
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(CCR). For this,the global-to-local search strategy is appliedlenote that the improvement in performance achieved by the
(e.g., see [9]), i.e., after globally searching using a coaraéorementioned methods in comparison to the method corre-
scale of the parameter space, a candidate interval where spending to the column of the table is statistically significant.
optimal parameters might exist is retrieved, and then a finemnally, the speedup rate for the training stage (left side of
inspection for identifying the optimal parameters within thithe comma) and testing stage (right side of the comma) of the
interval is performed. For the subclass methods (SDA, MSDAIlgorithms on each dataset are depicted in Table Ill, where
FMSDA, EM-MSDA, KMSDA) we optimize over the number higher speedup values indicate faster computations. In every
of subclasses in each class, and consequently over the ttthle we have divided the methods into three groups, namely,
number of subclasses. For the FMSDA method we additionallpear, subclass and kernel-based methods. With respect to this
require the identification of the exponentof the weighting partitioning, for Tables | and Ill we have used bold digits
functions in (43) and the number of fractional steps N, and underlined-bold digits to denote the best performance rate
for decreasing the subspace dimensionality by one. For théhin each group and along all methods respectively.
optimization of these parameters we search over the followingFrom Table | we can see that for the majority of the datasets
values:r = 3,4,...,16 andp = 3,4,...,20. Similarly, for the best ACCR among the linear subclass methods is provided
the kernel-based methods (KDA, KSDA, KMSDA) we neethy FMSDA (in 10 out of 19 classification tasks of Table I) or
to identify the optimal parameters of the kernel functions. IEM-MSDA (again in 10 out of 19 tasks). In overall the best
our experiments we used two types of base kernels: GuassdTICR among all methods is achieved by KMSDA (in 17 out
radial basis functiork(x;,x;) = exp(—||x; — x;||/20?), 0 € of 19 tasks). We should also note that in many cases FMSDA
R4, and the polynomial functiott(x;,x;) = ((x;x;) +0)2, and EM-MSDA outperform the kernel-based methods as well
o € R, p € Ny. For their parameters we search for the optimgincluding KMSDA in 2 classification tasks, while they match
values over the following ranges: = 0,1, o = 1,2,...,8, KMSDA’s performance in another 2 tasks). Between FMSDA
o =0.1,0.2,...,4. We should also note that for the datasetand EM-MSDA, we observe that the former tends to perform
whose number of training observations is small compared better when the data dimensionality is larger than the number
to their dimensionalityF’ (such as the Sheffield and ETH-of the samples, and at the same time many subclasses are
80 datasets), the computation of the inverse of the MLE akcessary in order to capture the subclass structure of the data.
the sample covariance matrix (16) by the EM-based metim these cases, the training samples per subclass are limited
ods, for instance SMDA and EM-MSDA, will be especiallyand consequently the subclass covariance matrices are poorly
problematic (e.g. see [2], [53]). In these cases, we compustimated [53]. This adversely affects the performance of
the inverse using the eigenvalue decomposition of the sampél-based methods. For instance, the performance of SMDA
covariance matrix, keeping only the eigenvalue componerdgsd EM-MSDA on the ETH80 dataset (which contains 8
whose eigenvalues are above a specific threshold [2]. object classes and each object class 10 different objects) is
The recognition performance of a method regarding @nsiderably lower than that of FMSDA.
dataset is measured using the average CCR (ACCR) alongfrom the results in Table Il we can also see that the
all CV folds, i.e., at each CV fold the maximum correcperformance improvements attained by the proposed methods
classification rate (CCR) for the different set of parameters age statistically significant for most of the datasets. From Table
retained, and the CCRs are averaged along all CV folds. Siffl; we additionally see that FMSDA and EM-MSDA provide
ilarly, the ground truth labels and the predicted labels at eagyistematically lower computation times during the testing
CV fold for each algorithm are retained, and the McNemarstage among all linear subclass methods (and, as expected
hypothesis test [54], [S5] with a significance level®025 is are also faster than the kernel-based methods). This quality
used to evaluate the statistical significance of the differenog FMSDA and EM-MSDA is a critical advantage of them,
in the performance between each of the proposed algorithesspecially for applications that require real-time or near real-
and any other algorithm used in our experiments. Moreovéime processing of large data volumes, such as event detection
to compare the computational complexity of the algorithma video streams. Summarizing, we observe that the three
we recorded the testing and training times in minutes, onpgoposed methods in most cases outperform the current state
Intel i7 2.8GHz machine, with respect to one CV fold foof the art as recently reported for KSDA in [33] and in the
each method and each dataset. Except for MDA and SMD&lso very recent works [21], [26], at the same time offering
for which their R package implementation [21] is exploitedcompetitive response times during the testing (recognition)
all the other algorithms are compared using an unoptimizethge.
Matlab implementation. The FMSDA algorithm was then used
as the baseline algorithm to compute the speedupstafer
the x-th algorithm usings,. = Ty sda/Tx, WhereTs,,sq, and
T, are the training (or testing) time concerning the FMSDA Subclass DA methods are attractive alternatives to the
and thek-th algorithm respectively. kernel DA variants because they offer fast (often real-time)
The ACCRs of the methods along with the average dimeoemputations and comparable recognition performance. Fur-
sionality in the discriminant subspace are shown in Tablethermore, combining subclass partitioning and the kernel trick
while, the results of the statistical significance tests are showna single DA method opens new possibilities for improved
in Table II. In the latter, a cell contains the symbpelx or ~ DA effectiveness. MSDA is a very recent subclass method,
for FMSDA, EMMSDA or KMSDA respectively, in order to that utilizes an effective partitioning procedure to derive a

VI. CONCLUSIONS
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TABLE |
RECOGNITION RATES (ACCRS). THE DIMENSIONALITY OF EACH DATASET IS GIVEN IN THE PARENTHESIS NEXT TO THE DATASETS NAME.

Linear methods Linear subclass methods Kernel methods
PCA LDA FDA MDA SMDA SDA MSDA FMSDA EM-MSDA KDA KSDA KMSDA
MONKZ (6) 81.4% (6) 69.9% (1) 69.991) 95.6% (6) 93% (6) 84.4%(6) 98.8% (4) 99.8% (3) 96.2% (3) 90.2%(1) 94.4% (5) 99.8% (3)
MONK2 (6) 71.7% (6) 67.3% (1) 67.3%1) 76.1%(5) 65.3% (3) 84.9%(6) 87.2% (6) 85.2% (5) 90% (6) 81.9%(1) 83.5% (29)  91% (16)
MONK3 (6) 86.8% (6) 85.8% (1) 85.8%(1) 94.1%(6) 89.5% (6) 88.9%(3) 93.0% (3) 94.4% (2) 94.4% (3) 95.8% (1) 94.6% (3) 96.2% (1)
LSD (36) 89.4% (36) 84% (5) 85.2% (5) 88.1%(35) 83.2% (35)  87.8%17)  89.9% (16)  90.4% (17)  89% (19) 87.1%(5) 89.3% (6) 89.9% (38)
WDBC (30) 89.4%(30) 93.3% (1) 94.7% (1) 96.1%(27) 91.9% (19)  94.7%(15)  96.8% (10) 97.1% (5)  97.2% (8) 93.3%(1) 94.3% (5) 95.4% (5)
MDD-pix (240) 97.5% (240)  94.1% (9) 95.3%8) 96.4%(105)  96.7% (71)  96.6%(55)  97.8% (70)  97.3% (44) 95.9% (19) | 98.5%(9) 98.2% (47)  98.6% (23)
MDD-fou (76) 82.6% (76) 80.4% (9) 80.29%48) 82.9%(72) 82.6% (64) 81.3%(52)  82.2% (24) 82.7% (13)  83.1%(23) | 85.4%(9) 84% (17) 85.9% (12)
MDD-fac (216) 94.4%(213)  97.6% (9) 97.6% (8) 98.2%(63) 97.2% (80)  96.2%(31)  98.3% (29)  98.4% (20)  98.4% (43) | 98.2%(9) 95.7% (23)  98.8% (13)
MDD-kar (64) 97.2% (64) 95.7% (9) 95.6%(8) 97.2%(64) 97.3% (55)  97.0%(41)  97.2% (20) 96.8% (15)  97.5% (57) | 98.3%(9) 98.1% (23)  98.6% (22)
MDD-zer (47) 81.1% (47) 76.4% (9) 79.3%@8) 83% (47) 83.2%6 (24)  81.2%(22)  83.2% (22)  82.8% (27) 78.7% (16) | 84.0%(9) 83% (23) 84.8% (27)
MDD-mor (6) 59.5%(6) 67.2% (6) 67.3% (4) 67.4% (6) 68.2% (6) 67.5% (6) 68.3% (6) 68.5% (5) 67.6% (6) 65.8%(9) 64.8% (17)  68.7% (33)
ETH80(750) 83.5% (750)  69.5% (7) 77.19%7) 79.4%(115) 73.6% (82)  85.1%(73) 86.5% (75)  87% (65) 74.7% (41) | 86.9%(7) 83.2% (17)  87.2% (63)
Mediamill (101) 68% (101) 64.9% (4) 63.9% (4) 71.3%(21) 60.2% (9) 69.3%35)  71.4 (23) 75.8% (31)  72% (27) 74.3% (4) 76.8% (26)  77.5% (24)
Shefield (1024) 94.9%(236) 95.5% (19)  96.8% (19) | 90.3%(39) 95.206 (74)  97.2%(31)  97.6% (24)  98.5% (18)  97.3% (34) | 98%(19) 98.5% (31)  98.5% (23)
A&T (1024) 92.5%(319) 96.1% (39)  97.8%(33) | 93.5%(81) 95.4% (81)  97.7%(47)  98.3% (44)  98.9% (29)  98.9% (39) | 97.9%(39)  98.9% (47)  99.4% (40)
Ext¥aleB (1024) 53.4%(379)  85.6%(37)  85.6% (35) | 73.3%(75) 66.2% (39)  86.5%(71)  86.7% (48) 87.7% (40)  87.8% (37) | 85.5%(37)  87.9% (48)  89.9% (39)
PIE (1024) 44.4%(679) 77.6% (67)  79.8% (41) 82.1%(105)  62.6% (69)  80%(67) 84.9% (85)  86.9% (66) 86.1% (67) | 85.1%(62)  83.7% (67)  86.7% (74)
Banana(1024) 68.4% (2) 57.2% (1) 63.79%1) 88.3%(4) 88.3% (2) 86.2%(2) 88.4% (2) 88.3% (2)  88.9% (2) 88.8%(1) 88.4% (3) 89.5% (4)
B. Cancer(1024) | 67.6% (9) 65.2% (1) 65.2941) 71.4%(4) 69.4% (2) 70.4%(4) 73.9% (7) 75.3% (7)  77.9% (9) 74.7%(1) 74.6% (3) 79.2% (3)
TABLE I

STATISTICAL SIGNIFICANCE RESULTS SYMBOLS +, *, ~ DENOTE THAT THE IMPROVEMENT IN PERFORMANCE ACHIEVED BYFMSDA (+), EMMSDA
(*), ORKMSDA (~) IN COMPARISON TO THE METHOD OF A GIVEN COLUMN IS STATISTICALLY SIGNIFICANT

Linear methods Linear subclass methods Kernel methods
PCA LDA FDA MDA SMDA SDA MSDA KDA KSDA
MONK1 +, %, ~ +, %, ~ +, %, ~ +, ~ +, ~ +, *, ~ T, %, ~ ¥, ~
MONK2 N N T T VI [ *, ~ *, ~ *, ~
MONK3 B S Fos~ e~
LSD 4, %, ~ 4, ok, ~ +, %, ~ 4+, ~
WDBC 4, ok, ~ +,
MDD-pix ~ +, ~ ~ ~ ~ ~
MDD-fou ~ 4+, %, ~ 4+, %, ~ ~ ~ +, %, ~ ~ ~
MDD-fac 4+, x, ~ 4+, x, ~ 4+, %, ~ ~ +, %, ~ +, %, ~ ~ ~ 4, o, ~
MDD-kar ~ 4, %, ~ +, ok, ~ ~ ~ *, ~ ~
MDD-zer 4+, ~ +, ok, ~ +, ~ ~ ~ +,~ ~ ~
MDD-mor +, ok, ~ +,~ +,~ +, ~ +,~ ~ +,~
ETH80 +,~ 4w, o~ +,~ +, ~ +,~ +,~ 4~
Mediamill +, %, ~ +, %, ~ +, ok, ~ 4+, * +, ok, ~ +, * +, % +, *
Shefield +, *, ~ 4, %, ~ 4, ok, ~ 4+, ok, ~ +, ok, ~ +, ~ 4+, ~ +,~
A&T +, %, ~ +, %, ~ +, %, ~ +, %, ~ +, %, ~ +, o, ~ ~ +, %, ~ ~
ExtYaleB +, %, ~ 4, %, ~ 4, %, ~ 4+, %, ~ 4+, %, ~ 4+, %, ~ +, %, ~ +, %, ~
PIE +, o, ~ +, ok, ~ 4, %, ~ 4, %, ~ 4, o, ~ 4, ok, ~ 4, %, ~ 4, ok, ~ 4o, ~
Banana 4+, %, ~ 4+, %, ~ +, %, ~ +, %, ~ +, %, ~ +, ok, ~ H, *, A~ 4+, x, ~
B. Cancer +, ok~ +, ok, +, ok, +, %k, ~ +, ok, ~ +, ok, ~ +, %k, ~ +, %k, ~
TABLE Il
TRAINING AND TESTING SPEEDUP RATES
Linear methods Linear subclass methods Kernel methods
PCA LDA FDA MDA SMDA SIA MSDA FMSDA EM-MSDA KDA KSDA KMSIA
MONK1 15.19,0.13 34.071 1.79,0.89 11.81 0.56 4.20, 0.57 6.74,0.98 3.51, 1.09 11 2.87,0.92 3.08 0.59 0.20,0.65 0.18, 0.64
MONK2 10.19,0.12 35.74 0.94 2.07,0.88 12.12 0.58 7.84,0.45 8.98,0.94 4.46, 0.94 1,1 1.32.18 3.18 0.59 0.13,0.55 0.13, 0.58
MONK3 15.96,0.13 35.861 2.13,0.91 12.7,0.83 4.45, 0.65 8.74).99 4.05, 0.95 1,1 3.54,25 3.03 0.54 0.21,0.65 0.19, 0.62
LSD 331.16,0.76 564.22 1.32 8.68,1.42 37.59 0.98 6.71, 0.64 30.89,0.99 9.30, 0.97 11 2.20, 0.96 0.07,0.52 0.01,0.46 0.01, 0.43
WDBC 23.10,0.10 54.40 1.06 2.60,0.76 5.75 0.17 0.18, 0.15 4.85,0.94 3.43, 0.99 1,1 1.32,.06 1.29 0.45 0.03, 0.46 0.03,0.47
MDD-pix 410.92,0.33 1136.07 1.63 6.04,1.41 13.41,0.06 1.1,0.37 14.86 0.73 1.29,0.78 1,1 3.571.13 3.02 0.39 0.17,0.35 0.03, 0.35
MDD-fou 517.16,0.65 934.62 1.27 3.23,1.20 9.18,0.07 1.18, 0.61 20.41 0.61 6.46, 0.99 11 3.68, 0.98 1.31,0.38 0.07,0.35 0.01, 0.34
MDD-fac 169.54,0.30 357.92 1.40 2.22,1.24 4.06,0.05 0.39, 0.4 6.44 0.78 1.61, 0.95 11 1.35, 0.96 1.05 0.34 0.06,0.31 0.01, 0.31
MDD-kar 181.93,0.65 339.6Q 1.27 1.06,1.11 2.96,0.07 0.48, 0.62 7.96 0.60 2.68, 0.91 11 1.07, 0.85 0.39 0.36 0.02,0.32 0.01, 0.32
MDD-zer 212.70,0.80 296.79 1.09 1.22,1.13 3.62,0.09 0.79, 0.89 10.64 0.93 2.13,0.88 11 3.40, 0.96 0.46 0.4 0.02,0.34 0.01, 0.34
MDD-mor 389.80 1.03 347.17, 1.06 1.85,1.13 6.41,0.15 8.13,0.21 15.87,0.87 0.65, 0.37 1,1 3.09,0.82 | 0.340.33 0.02,0.35 0.01, 0.30
ETH80 380.92,0.09 1123.131.19 13.312.09 21.850.23 1.12,1.07 7.14,1.02 1.18, 1.05 1,1 0.51,.08 1.37,0.32 0.03,0.28 0.01, 0.28
Mediamill 168.18,0.06 305.82 1.78 5.47,1.17 19.42,0.1 64.88,0.41  21.800.92 10, 1.02 1,1 2.131.04 4.32 0.53 0.14,0.47 0.05, 0.47
Shefield 470.65,0.12 678.09 0.99 1.09,0.58 62.25 0.08 3.72, 0.06 6.53,0.26 18.14, 0.98 iy 2.52,0.99 74.04 0.39 12.33,0.38 4.30,0.39
A&T 2470.1,0.31 3169.4 0.93 0.5,0.87 131.33 0.09 1.95, 0.19 1.47,0.79 0.83, 0.82 11 0.61,0.93 27.34 0.36 1.38,0.25 1.29,0.34
ExtvaleB 510.28,0.27 919.18 0.92 0.72,1.13 22.76 0.09 3.65, 0.09 6.29,0.66 1.32,0.74 1,1 0.59,.02 16.47 0.47 3.17,0.36 153,04
PIE 472.67,0.12 2115.130.97 0.47,1.03 54.84 0.38 5.77,0.31 13.36,0.99 0.61, 0.74 11 1.81,1 44.09 0.49 2.22,0.43 1.39, 0.34
Banana 11.98 0.93 7.651.1 0.74,1.1 50.79 0.54 15.63, 0.83 2.29,0.99 1.34, 0.99 11 0.59, 0.98 0.17, 0.69 0.04,0.59 0.03, 0.49
B. Cancer 21.67,0.4 40.2 1.17 3.14,1.14 37.8 0.23 3.37,0.63 21.07,1.04 9.06,0.94 1,1 0.33, 0.90 0.43 0.25 0.27,0.18 0.08, 0.18

Gaussianhomoscedastidivision of the data. In this work, machines [56]. Recently, a feature selection method based on
we extended MSDA in three different ways: a) EM-MSDALDA was proposed in [57]. This method ranks each feature
was derived by linking MSDA with the Guassian mixturausing the sum of the eigenvectors of the LDA projection
model, b) FMSDA was proposed in order to solve the so-calledatrix. In a similar fashion FMSDA could be easily modified
subclass separation problem, and ¢) KMSDA was presentedank and discard instead of the least discriminant dimension
for separating categories with nonlinearly separable subclasdes least significant feature at each iteration. We plan to
using the kernel trick. The effectiveness of the three proposiedestigate this possibility, as well the possibility of extending
DA methods was verified by extensive experimentation dhe proposed methods for signature-based classification, taking
various publicly available standard benchmarks. advantage of the work described in [58].

Our methods could also be extended and used in additional
related problems, such as feature selection. Typically, this is
an application domain for methods such as support vector

The final published article is available at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6360018
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APPENDIXA C N; H;
DERIVATION OF EQUATIONS IN SECTION || np(X,Z(0) =Y > > 2 (nm; + N (X} |p, ) -
i=1n=1j=1

A. Derivation of Egs. (6) and (7) (58)

The Gaussian mixture distribution concerning i@ class  Applying the expectation operator to the above expression and

in (5) can be derived in terms of latent variables [36kubstitutingE[z; ;.| from (7) the expectation of the complete
[37] as described in the fO"OWIng Let;, e R be a data |og -likelihood is expressed as
categorical latent random vector concerning thih class,

whose parameter spacg is the standard base &, i.e., E[lllcp()jg’zljle)]

Z; ={ei1,...,e; u,}, where only thej-th element of the unit

vectore; ; is equal to one and all other elements are equal Z;;h hm” +lnN(XM|H”’ )

to zero. Settingp(Z; = e; ;) = m; andp(x|Z; = e; ;) = Cc H r N

N(x|p; ;) the marginal and conditional densitigs(z;) and = Z Nijlnm; — ——In(27) + = In |27}
p(x|z;), are expressed in terms of the mixing coefficients =1 ;=1 2

and mixture components respectivefy(z;) = Hf:'il i 1 G N A S

p(x|z;) = [T, N(x|p; ;)*. Thus, using the product rule  ~3 Z ) M (Kim = )" BT (Kin = Hiz)

of probability we can express theth class-conditional joint i=1n=15=1 (59)
density as Using the identity (x? — p; )72 (xD — p, ;) = (xI —

p(x,zilwi) = p(zilwi)p(x|zi, wi) = p(z:)p(x|2;) i?)Tgil(X?_iw)‘F(xu F‘u)Tg (Xu u”)+2(x -
H, %) 271, ; — p,; ;) along with the fact thad ™, (x7 —
= H(mj/\/'(x\ui,j))zivf, (52) x;;)"® " (x; — m, ;) = 0, and multiplying both S|des by
j=1 two, we arrive to (6).

where we have used the fact thatis conditionally indepen-
dent of w; given z;, and z; is independent ofv;. The i-th
class-conditional marginal distribution gfcan then be written
as

B.

Derivation of Eq. (18)

The constraint that the mixing coefficients should sum to
one can be incorporated in (17) usigglagrange multipliers

n;,4 = 1,...,C. Therefore, we need to find the stationary
X|wz ZP X zz|w7, Z’]T’Lj X|/J/z JJ (53) pOint of
C N; H;
which is a Gaussian mixture eqm_vale_nt to (5), and, using the Z Z Z R (I +InN (x| p; ;)
Bayes’ rule the posterior distribution is also derived i=1n=1j=1

t i N i Zi,j
U 1)
Z] 1 T4 (X‘ﬂ'z,y)

(60)

c  H
+Z77i<z mij — 1
= o

Therefore,under the i.i.d.assumptionthe likelinood of the With respect tor; ; ands;. Optimizing overr; ; we arrive to

complete data set is expressed as (p.108, [27])

HHp 1ﬂz|wl

i=1n=1
c Nz L

ITIT I

i=1n=1j =1
while the posterior distribution takes the form
C N; H;

p(ZIX,0) o [T I [N (

i=1n=1j=1

whereZ = {Z,,...,Z¢} is the set of all categorical vectors.
Observing that the posterior distribution is independent oveP
the expectation of the categorical variables can be derived

; [6]
(Xmﬂi,j))

(X‘Mi,j)

(X, Z|0)

xP'p; ;). (55) [

(2]
(3]
(4]

n
i,
J?

X' 5))° (56)

2]’
H;

Zy >1 2, 7(7T1 J
H;
Zj:l i, j

4] =

,J

(67)

)

N, ;/mi; +n = 0. If we multiply both sides withr; ; and
sum over all subclasses of theh class we get); =
Eliminating n; we obtain (18).

—N;.
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