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Abstract—In this paper, a theoretical link between mixture
subclass discriminant analysis (MSDA) and restricted Gaussian
model is first presented, and then two further discriminant anal-
ysis (DA) methods, fractional step MSDA (FSMSDA) and kernel
MSDA (KMSDA) are proposed. Linking MSDA to an appropriate
Gaussian model allows the derivation of a new DA method under
the Expectation Maximization (EM) framework (EM-MSDA),
that derives simultaneously the discriminant subspace as well
as the maximum likelihood estimates. The two other proposed
methods generalize MSDA in order to solve problems inherited
from conventional discriminant analysis. FSMSDA solves the
subclass separation problem, that is, the situation when the
dimensionality of the discriminant subspace is strictly smaller
than the rank of the inter-between-subclass scatter matrix. This
is done by an appropriate weighting scheme and the utilization
of an iterative algorithm for preserving useful discriminant
directions. On the other hand, KMSDA uses the kernel trick
to separate data with nonlinearly separable subclass structure.
Extensive experimentation shows that the proposed methods
outperform conventional MSDA and other LDA variants.

Index Terms—Feature extraction, discriminant analysis, mix-
ture of Gaussians, probabilistic algorithms, clustering, pattern
recognition, classification, machine learning.

I. I NTRODUCTION

In a natural environment, the high dimensional measure-
ment signals, lying in theF -dimensional measurement space,
usually represent patterns residing in a much lower,D-
dimensional subspace embedded in the ambient measurement
space [1]. Dimensionality reduction (DR) is an important com-
ponent of statistical pattern classifiers that helps to overcome
estimation problems in noisy high-dimensional environments,
and thus, often results in improved classifier accuracy as well
as lower storage and processing time requirements. A fun-
damental DR technique is linear discriminant analysis (LDA)
[2]–[4]. Given a training set ofC classes andN training obser-
vations represented with the block matrixX = [X1, . . . ,XC ],
whose i-th block, Xi = [x1

i , . . . ,x
Ni
i ], consists of theNi

observationsxn
i
∈ RF of the i-th class, this method derives a

discriminant subspace spanned by the column vectors of the
transformation matrixΨ ∈ RF×D that maximizes the ratio

JLDA(Ψ) = tr(ΨT SbΨ)/ tr(ΨT SwΨ) (1)
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of the between-class sum of squaresSb =
∑C

i=1 p̂i(µ̂i −
µ̂)(µ̂i − µ̂)T to the within-class sum of squaresSw =∑C

i=1 p̂iΣ̂i, where, p̂i = Ni/N , Σ̂i = 1
Ni

∑Ni

n=1(x
n
i −

µ̂i)(xn
i − µ̂i)T , µ̂i = 1

Ni

∑Ni

n=1x
n
i , µ̂ =

∑C
i=1 p̂iµ̂i are

the estimated prior,the sample covariance matrix, the sample
mean, and the total sample mean, respectively. This optimiza-
tion problem turns out to be equivalent to the generalized
eigenvalue decompositionSbΨ = SwΨΛ, where the columns
of Ψ are the generalized eigenvectors corresponding to the
largest generalized eigenvalues in the diagonal matrixΛ [5].

Despite its elegant algebraic formulation, two important
shortcomings of LDA restrict its use in real-world applications:
a) The LDA criterion cannot be applied directly when the
matrix Sw is rank-deficient, a situation that occurs frequently
in many applications involvingsmall sample size(SSS) data.
Several methods have been proposed to deal with this problem,
including PCA+LDA [6], MMC LDA [7], dICA [8], and
others. b) LDA faces difficulties in deriving a discriminant
subspace when the classes are not linearly separable (a prob-
lem called hereafternonlinearity problem). This problem has
been mostly addressed by using kernel extensions of LDA, [9],
[10] or methods that use local linear discriminant analyzers to
learn the nonlinear data structure [2], [11]. However, the SSS
problem remains, and to address it similar solutions to those
discussed above are exploited for both the kernel-based [12],
[13] and local-based [14] LDA variants.

Another strategy for solving the nonlinearity problem is to
use a clustering procedure to derive a subclass division of
the data, and then incorporate this information into the LDA
criterion (again, the SSS problem is handled with techniques
that overcome the rank-deficiency ofSw, e.g. see [15]).
The main advantage of this strategy over the methods de-
scribed in the previous paragraph (especially over the kernel-
based variants of LDA) is that it offers faster computation
times during testing, because it only involves a single matrix
multiplication. This is the underlying principle of mixture
discriminant analysis (MDA) [16] that utilizes the following
criterion

JMDA(Ψ) = tr(ΨT SbsΨ)/ tr(ΨT SwsΨ), (2)

where Sbs =
∑C

i=1

∑Hi

j=1 p̂i,j(µ̂i,j − µ̂)(µ̂i,j − µ̂)T is the

between-subclass scatter,Sws =
∑C

i=1

∑Hi

j=1 p̂i,jΣ̂i,j is the
within-subclass scatter matrix,Hi denotes the number of
subclasses of thei-th class, andp̂i,j , µ̂i,j , Σ̂i,j are the
estimated prior, sample mean and sample covariance matrix
of the j-th subclass of classi.

As our target is to derive a subspace that best separates
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observations of different classes, a better choice is to define
a discriminant metric that favors the scatter of means be-
tween subclasses of different classes. This idea is exploited
in subclass discriminant analysis (SDA) [17] that defines the
following criterion

JSDA(Ψ) = tr(ΨT SbsbΨ)/ tr(ΨT ΣxΨ) , (3)

where Sbsb =
∑C−1

i=1

∑Hi

j=1

∑C
k=i+1

∑Hk

l=1 p̂i,j p̂k,l(µ̂i,j −
µ̂k,l)(µ̂i,j − µ̂k,l)T is the inter-between-subclass scatter ma-
trix, representing the scatter between the means of subclasses
of different classes (inter-subclass scatter of means), and
Σx = 1

N

∑C
i=1

∑Hi

j=1

∑Ni,j

n=1(x
n
i,j − µ̂)(xn

i,j − µ̂)T is the total
covariancematrix.

Several extensions of MDA [18]–[21], and SDA [22]–[25]
have been proposed, mainly seeking a more effective subclass
partitioning procedure. In [26], mixture subclass discriminant
analysis (MSDA) is presented, where it is explained that the
use of the criterion

JMSDA(Ψ) = tr(ΨT SbsbΨ)/ tr(ΨT Σ̆xΨ) , (4)

where, Σ̆x = Sbsb + Sws, is a better choice than the SDA
criterion (3). Moreover, this algorithm assumes that the data
have a Gaussian homoscedastic subclass structure and intro-
duces an appropriate subclass partitioning procedure along
with a nongaussianity criterion to derive the subclass division
that optimizes the MSDA criterion. In [26], it was shown
that in most cases MSDA outperforms SDA and other LDA
variants. However, as we explain in the following, there is still
room for further improving dimensionality reduction along the
following directions:

1) Link to Gaussian model: In [16], [27], [28], it was
shown that the LDA and MDA subspaces (defined by the
column vectors of the respective projection matrix) coincide
with the subspace that maximizes the log-likelihood function
of Gaussian class densities or Gaussian mixture class densities,
respectively, under the assumption that all class densities (or
mixture component densities) are homoscedastic and that all
class discriminant information is confined in aD-dimensional
subspace of theF -dimensional measurement space. A re-
spective link between MSDA (or SDA) and an appropriate
Gaussian model has not yet been provided in the literature,
and such a link could lead to a new DR approach.

2) Subclass separation problem: When the dimensionality
of the LDA subspace is strictly lower than the rank of the
between-class matrix, i.e.,D < C − 1, the projection of
the class densities to the discriminant subspace may smear
the neighboring classes in the measurement space, a situation
described as the class-separation problem [29]–[31]. The same
problem can equivalently occur to MSDA (and other subclass
variants of LDA), i.e., neighboring subclasses in the original
feature space may overlap in the projection subspace when the
MSDA subspace dimensionality is strictly lower than the rank
of the inter-between-subclass scatter matrix. We refer to this
situation as the subclass separation problem.

3) Subclass nonlinearity problem: MSDA (and other sub-
class variants of LDA) can resolve the problem of nonlinearly
separable classes as long as a subclass division that results in

linearly separable subclasses is identified. If this is not possi-
ble, a subclass-based approach that can deal with nonlinearly
separable subclasses is desirable, often using an appropriate
kernel to map the nonlinearly separable subclass divisions into
a new space where they are linearly separable. For instance,
in [32], [33] the kernel SDA (KSDA) method was shown to
outperform a number of other approaches including kernel
discriminant analysis (KDA) [9] and kernel support vector
machines (KSVM) [34].

Inspired from the above discussion, in this paper we first
provide an explicit link between MSDA and an appropri-
ate Gaussian model, which allows the derivation of a new
DA method under the Expectation Maximization framework
(EM-MSDA). Furthermore, we present two additional meth-
ods, fractional-step MSDA (FSMSDA) and kernel MSDA
(KMSDA), to alleviate the subclass separation problem of
MSDA and to handle cases where MSDA subclasses are not
linearly separable, respectively.

The rest of the paper is structured as follows: In Section II
a link between MSDA and a Gaussian model is provided and
EM-MSDA is derived, while in Sections III and IV, FSMSDA
and KMSDA are presented. In Section V experimental results
are reported and Section VI concludes the paper.

II. L INK TO GAUSSIAN MODEL

In this section, we initially provide a Gaussian mixtures
model formulation of the classification task, and then show
how the Expectation Maximization (EM) algorithm [35]–[37]
can be applied to estimate the unknown model parameters.
Through this treatment we provide an explicit link between
MSDA and the described Gaussian model, and consequently
derive the EM-MSDA algorithm.

A. Gaussian mixtures model

Let ω1, . . . , ωC be a finite set ofC states of nature (classes)
and (X, Y ) be anX×IC-valued random pair, whereX ⊂ RF

is the space of observations andIC = {1, . . . , C} is the class
indicator variable [2], [3], [38]. Under this framework we
model thei-th class-conditional probability density function
p(x|ωi) as a multivariate Gaussian mixture density ofHi

component densities where the mixture components along all
classes are homoscedastic [16], i.e.

p(x|ωi) =
Hi∑

j=1

πi,jN (x|µi,j) , (5)

where,N (x|µi,j) = (τ)−F/2|Σ|−1/2 exp((−1/2)∆(x, µi,j))
is the j-th component density (subclass) of thei-th mixture
with constantτ ≈ 6.283185..., nonnegative mixing coeffi-
cient πi,j (satisfying

∑Hi

j=1 πi,j = 1), mean vectorµi,j and
covariance matrixΣ shared along all mixture components.
Moreover, ∆(x,µi,j) = (x − µi,j)T Σ−1(x − µi,j) is the
Mahalanobis distance between observationx and the j-th
component of classi.

We then wish to obtain aD < F -dimensionality re-
duction of the data which favors the separability of those
subclasses that correspond to different classes. Consequently,
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the parameter vectorof the presented model is formed
as θ = [π1,1, µ

T
1,1, . . . , πC,HC ,µT

C,HC
, vec(Σ)T , vec(Ψ)T ]T ,

where Ψ ∈ RF×D is the required projection matrix for
mapping the data into the reduced subspace,T is the vector
transposition operator, and the vec() operator stacks the matrix
columns to a vector.

B. Log-likelihood function

For the estimation of the unknown parametersθ we resort
to the EM algorithm. The EM algorithm is based on the
interpretation of the observed data setXi of i-th class as
incomplete, where the missing part is a corresponding setZi =
[z1

i , . . . , z
Ni
i ] of categorical vectorszn

i = [zn
i,1, . . . , z

n
i,Hi

]T , in
which only a particular elementzn

i,κ equals to 1, indicating
that xn

i was produced from theκ-th component (subclass)
of the i-th mixture density. Under the above formulation and
assuming that theC data matrices (blocks) of the block matrix
X (Section I) are independent as well as that the column
vectors of thei-th block constitute a random sample from the
population with densityp(x|ωi) (i.e., all observation vectors
are independent and identically distributed (i.i.d.)), the log-
likelihood function L1 of the complete dataset would be
(similar to [16], [27] – see Appendix A-A)

2L1 =
C∑

i=1

Hi∑

j=1

2Ñi,j ln πi,j −NF ln(2π) + N ln(detΣ−1)

−
C∑

i=1

Hi∑

j=1

Ñi,j(x̄i,j − µi,j)
T Σ−1(x̄i,j − µi,j)

−
C∑

i=1

Ni∑
n=1

Hi∑

j=1

hn
i,j(x

n
i − x̄i,j)T Σ−1(xn

i − x̄i,j),

(6)
wherehn

i,j are the responsibilities, i.e., the expected values of
the categorical variableszn

i,j for each data point, given by

hn
i,j = E[zn

i,j ] =
π̂i,jN (xn

i |µ̂i,j)∑Hi

j=1 π̂i,jN (xn
i |µ̂i,j)

, (7)

and x̄i,j = (1/Ñi,j)
∑Ni

n=1 hn
i,jx

n
i , Ñi,j =

∑Ni

n=1 hn
i,j are the

weighted sample mean and the effective number of points of
thej-th component of thei-th mixture respectively (note from
(7) that

∑Hi

j=1 Ñi,j = Ni). Moreover,ln δ and detA denote
the natural logarithm of numberδ and the determinant of
matrix A, respectively. We can rewrite (6) more compactly
as

2L1 = ζ −
C∑

i=1

Hi∑

j=1

Ñi,j(x̄i,j − µi,j)
T Σ−1(x̄i,j − µi,j)

= ζ − tr{N(X̄−M)T Σ−1(X̄−M)} (8)

whereζ is the part of the log-likelihood function that is in-
dependent of the true means (ζ=

∑C
i=1

∑Hi

j=1 2Ñi,j ln πi,j −
NF ln(2π) + N ln(detΣ−1)−∑C

i=1

∑Ni

n=1

∑Hi

j=1 hn
i,j(x

n
i −

x̄i,j)T Σ−1(xn
i − x̄i,j)), and M = [µ1,1, . . . , µC,HC

], X̄ =
[x̄1,1, . . . , x̄C,HC ] are the matrices of true means and weighted
sample means respectively.

1) ConstrainedM: We wish to impose two constraints on
the values of the true means as we explain in the following.
Firstly, we require that the discriminant information is confined
in a D-dimensional subspace of the originalF -dimensional
measurement space (e.g., see p. 339 [27], [16], [28]). Under
this restriction the mean of thej-th mixture component of the
i-th class density is expressed as

µi,j = µo + ΣΨυi,j (9)

where,Ψ ∈ RF×D is a singular transformation matrix with
uncorrelated column vectors that transformsΣ into the unit
matrix

ΨT ΣΨ = I, (10)

µo is the total mean, andυi,j ∈ RD is the projection ofµi,j

into the lower-dimensional subspace. The latter is clear if we
rearrange (9) to yieldυi,j = ΨT (µi,j − µo). In matrix form
(9) can be written as

M = Mo + ΣΨΥ (11)

where,M now is of column rankD, Mo = [µo, . . . , µo] is
the F × H matrix whose column vectors equal to the total
meanµo, andΥ = [υ1,1, . . . , υC,HC ] is the matrix with the
projection coefficients of the mean vectors.

Secondly, we wish to penalize (6) such that in the lower
dimensional subspace the between-subclass spread is empha-
sized relative to the within-subclass spread. We can impose
this by penalizing (6) with the termtr{ΥQΥT }. The penalty
matrix Q is defined as

Q = NA−1N−N (12)

where N = diag(Ñ1,1, . . . , ÑC,HC
) is an H × H diagonal

matrix with diagonal elements the effective sample numbers
of the respective mixture component,A is a symmetric matrix
that allows us to express the weighted inter-between-subclass
scatter matrix

Sw
bsb =

C−1∑

i=1

Hi∑

j=1

C∑

k=i+1

Hk∑

l=1

p̃i,j p̃k,l(x̄i,j − x̄k,l)(x̄i,j − x̄k,l)T ,

(13)
in a matrix product form,

Sw
bsb = X̄AX̄T , (14)

and X̄ = [x̄1,1, . . . , x̄C,HC ] is the matrix of the weighted
means. That is, the matrix elementAi,j.k,l that corresponds
to x̄i,j and x̄k,l weighted means takes the value

Ai,j.k,l =





p̃i,j(1− p̃i), if (i, j) = (k, l),
0 if i = k, j 6= l,
−p̃i,j p̃k,l else

(15)

where p̃i,j = Ñi,j/N , p̃i =
∑Hi

j=1 p̃i,j = Ni/N . Notice
that the sum of the components of any row vector (or any
column vector) of matrixA equals to zero. Therefore, for
any matrix with equal column vectorsB = [b, . . . ,b] the
matrix productABT will yield the zero matrix. We should
also note thatQ is symmetric and that forA = N, Q
and consequently the penalty term vanish, leading to the
conventional MDA algorithm [16]. As we will explain in the
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sequel,such a specializationof the penalty matrixQ will lead
to an interesting extension of the MDA algorithm that will
provide a subspace equivalent to the MSDA subspace.

2) ConstrainedΣ: Similarly to MDA with centroid shrink-
ing (p.171, [16]) we constrain the covariance matrix at the
weighted within-subclass scatter matrix

Σ̂ = Sw
ws =

C∑

i=1

Hi∑

j=1

p̃i,jΣ̂w
i,j

=
1
N

C∑

i=1

Hi∑

j=1

Ni∑
n=1

hn
i,j(x

n
i − x̄i,j)(xn

i − x̄i,j)T ,

(16)

whereΣ̂w
i,j = (1/Ñi,j)

∑Ni

n=1 hn
i,j(x

n
i − x̄i,j)(xn

i − x̄i,j)T is
the weighted sample covariance matrix of(i, j) component
density.

Imposing the above constraints (10), (11), (16), and the
penalty term (12) in (8), we finally arrive to the following
penalized and restricted version of the log-likelihood function

2L2 = − tr{N(X̄−Mo − Σ̂ΨΥ)T Σ̂−1(X̄−Mo − Σ̂ΨΥ)}
− tr{ΥQΥT }+ ζ,

(17)
whereΨ is constrained by (10).

C. EM algorithm

The EM algorithm can be applied to obtain the maximum
likelihood estimate (MLE) of the model parameters in (17).
This algorithm alternates between two steps, the Expectation
step (E-step) and the Maximization step (M-step), to produce
a sequence of estimates until some convergence criterion is
met.

1) E-step: During the E-step, the parameter values iden-
tified in the previous EM cycle are used to compute the
responsibilitieshn

i,j using (7).
2) M-step: In this step, the unknown mixture parameters

are estimated by maximizing (17). In particular, we need to
estimate the mixing coefficientsπi,j and the true meansµi,j

for each mixture component in (5).
Estimation ofπi,j : The mixing coefficients are estimated by

maximizing (17) subject to the constraint that
∑Hi

j=1 πi,j = 1,
giving (similarly to [37] – see Appendix A-B)

π̂i,j =
Ñi,j

Ni
. (18)

Estimationof µi,j : Now we proceed to estimating the true
means inM, or equivalentlyMo, Υ, andΨ, that maximize
(17) subject toΨT Σ̂Ψ = I. In (17)ζ is independent ofM and
thus can be discarded from the optimization criterion. More-
over, the maximization ofL2 is equivalent to the minimization
of −L2 under the same conditions, leading us to the following
optimization problem

argmin
Mo,Υ,Ψ

L3 subject toΨT Σ̂Ψ = I, (19)

where,

L3 = tr{N(X̄−Mo − Σ̂ΨΥ)T Σ̂−1(X−Mo − Σ̂ΨΥ)}
+tr{ΥQΥT }.

(20)

Setting ȳi,j = Σ̂−1/2x̄i,j , vi,j = Σ̂−1/2µi,j , and vo =
Σ̂−1/2µo, we can writevi,j = vo + Ψ̃υi,j or in matrix form

V = Vo + Ψ̃Υ (21)

where Ψ̃ = Σ̂1/2Ψ, Ȳ = Σ̂−1/2X̄ = [ȳ1,1, . . . , ȳC,HC
],

V = Σ̂−1/2M = [v1,1, . . . ,vC,HC
], and Vo = Σ̂−1/2Mo.

Substituting this to (20) we arrive to

L3 =
C∑

i=1

Hi∑

j=1

Ñi,j(ȳi,j − vi,j)T (ȳi,j − vi,j)

= tr{N(Ȳ −V)T (Ȳ −V)}+ tr{ΥQΥT }
= tr{N(Ȳ −Vo − Ψ̃Υ)T (Ȳ −Vo − Ψ̃Υ)}

+tr{ΥQΥT }

(22)

Setting the derivatives ofL3 in (22) with respect to the
projection coefficientsΥ to zero we obtain

∂L3

∂Υ
= 0 ⇒ Υ = Ψ̃T (Ȳ −Vo)AN−1 (23)

We cannow expand (22) as

L3 = tr{N(Ȳ −Yo + Yo −Vo − Ψ̃Υ)T

×(Ȳ −Yo + Yo −Vo − Ψ̃Υ)}+ tr{ΥQΥT }
= tr{N(Ȳ −Yo)T (Ȳ −Yo)}

+ tr{N(Yo −Vo)T (Yo −Vo)}
+ tr{NΥT Ψ̃T Ψ̃Υ}+ tr{ΥQΥT }
+2 tr{N(Ȳ −Yo)T (Yo −Vo)}
−2 tr{N(Ȳ −Vo)T Ψ̃Υ} (24)

Reformulating the fifth term of (24) we see that it vanishes

tr{N(Ȳ −Yo)T (Yo −Vo)}
=

∑C
i=1

∑H
j=1 Ñi,j(ȳi,j − yo)T (yo − vo) = 0 ,

(25)

Using (12), (23) and taking into account that̃ΨT Ψ̃ =
ΨT Σ̂Ψ = I the summand of the third and forth term of (24)
becomes

tr{NΥT Ψ̃T Ψ̃Υ}+ tr{ΥQΥT }
= tr{Υ(N + Q)ΥT } = tr{ΥNA−1NΥT }
= tr{A(Ȳ −Vo)T Ψ̃Ψ̃T (Ȳ −Vo)}

(26)

and similarly using (23) the sixth term of (24) becomes

tr{N(Ȳ −Vo)T Ψ̃Υ}
= tr{A(Ȳ −Vo)T Ψ̃Ψ̃T (Ȳ −Vo)} (27)

Substituting (25), (26), (27) into (24) we arrive to

L3 = tr{N(Ȳ −Yo)T (Ȳ −Yo)}
+tr{N(Yo −Vo)T (Yo −Vo)}
− tr{A(Ȳ −Vo)T Ψ̃Ψ̃T (Ȳ −Vo)} (28)

Using the fact thatAVT
o = 0, the last term of (28) is simplified

to

tr{A(Ȳ −Vo)T Ψ̃Ψ̃T (Ȳ −Vo)} = tr{AȲT Ψ̃Ψ̃T Ȳ}
+tr{AVT

o Ψ̃Ψ̃T Vo} − 2 tr{AVT
o Ψ̃Ψ̃T Ȳ}

= tr{AȲT Ψ̃Ψ̃T Ȳ} ,
(29)
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andsubstituting this backto (28) we arrive to

L3 = tr{N(Ȳ −Yo)T (Ȳ −Yo)}
+tr{N(Yo −Vo)T (Yo −Vo)} − tr{Ψ̃T ȲAȲT Ψ̃} ,

(30)
where, Yo = Σ̂−1/2Xo, and Xo is the F × H matrix
whose column vectors equal to the weighted meanxo =
(1/N)

∑C
i=1

∑Hi

j=1

∑Ni

n=1 hn
i,jx

n
i =

∑C
i=1

∑Hi

j=1 p̃i,jx̄i,j . We
now have to minimize (30) with respect toVo, or equivalently

tr{N(Yo−Vo)T (Yo−Vo)} = N(yo−vo)T (yo−vo) (31)

which is minimized foryo = vo and, thus, yieldinĝµo = xo

or in matrix form
M̂o = Xo . (32)

Without loss of generality we can setxo = [0, . . . , 0]T (e.g.
settingX ← X−Xo). Substituting this back to (30) we arrive
to

L3 = tr{Σ̂−1X̄NX̄T } − tr{ΨT X̄AX̄T Ψ} (33)

where we have used the requirement thatΨ transforms the
pooled covariance matrix̂Σ into the unit matrix (ΨT Σ̂Ψ = I).
In (33) only the second term depends on the transformation
matrix, and, thus, this matrix can be obtained by solving the
following optimization problem

argmax
Ψ

tr{ΨT Sw
bsbΨ} subject to ΨT Sw

wsΨ = I (34)

where we have used (14) and fixed̂Σ according to (16).
The solution to this problem is obtained by the set{ψi|i =
1, . . . , D} of the generalized eigenvectors ofSw

bsb and Sw
ws

corresponding to theD largest eigenvalues{λi|i = 1, . . . , D}
of the following generalized eigenvalue decomposition [2]

Sw
bsbΨ = Sw

wsΨΛ (35)

where Λ = diag(λ1, . . . , λD). Therefore, the subspace that
maximizes the constrained log-likelihood function in (19) at
each EM cycle coincides with the subspace that maximizes the
MSDA criterion, where the scatter matrices in (4) are replaced
by their weighted equivalent in each EM cycle. The MLE of
the true means can now be computed by substituting (23), (32)
into (11) and using the computed estimates of (16), (35) for
Sws andΨ respectively

M̂ = Xo + Sw
wsΨΨT (X̄−Xo)AN−1

= Sw
wsΨΨT X̄AN−1 (36)

where, we have assumed thatXo = 0.

D. Model selection

The Gaussian model described above as well as the derived
EM algorithm assume that the number of mixing components
in each Gaussian mixture density is provided. However, this
information is rarely known. In order to estimate the opti-
mum number of mixing components for each mixture density
with respect to the given training set, we utilize an iterative
procedure, where at each iteration a new Gaussian model is
specified (with respect to the number of mixture components)
and a nongaussianity measureΦ is evaluated in order to assess
the goodness of fit of the particular Gaussian model. This

iterative process is repeated until the nongaussianity measure
Φ converges to a small value as explained in the following.

Skewness and kurtosis can be used to provide an indication
of how well a particular Gaussian mixture density fits the
training data of a specific class [26], [39], [40]. Estimates
of the weighted standardized skewnessβ̂i,j,f and kurtosis
γ̂i,j,f along thef -th dimension regarding thej-th mixture
component of thei-th class can be computed as follows

β̂i,j,f =
1

Ñi,j

∑Ni

n=1 hn
i,j(x

n
i,j,f − µ̂i,j,f )3

σ̂3
i,j,f

, (37)

γ̂i,j,f =
1

Ñi,j

∑Ni

n=1 hn
i,j(x

n
i,j,f − µ̂i,j,f )4

σ̂4
i,j,f

− 3 , (38)

wherexn
i,j,f is thef -th elementof xn

i,j , and µ̂i,j,f , σ̂i,j,f are
the sample mean and standard deviation of thej-th mixture of
i-th class along thef -th dimension. The above estimates will
be close to zero for Gaussian densities and deviate from zero
the more the underlying density deviates from the Gaussian.
We can thus obtain an estimate of the skewnessβ̂i,j and
kurtosisγ̂i,j of the (i, j) component density by averaging along
all dimensions, i.e.,β̂i,j = (1/F )

∑F
f=1 |β̂i,j,f | , γ̂i,j =

(1/F )
∑F

f=1 |γ̂i,j,f |, where |a| denotes absolute value ofa.
Similarly, we can define a nongaussianity measure regarding
the Gaussian mixture density referring to thei-th class using

Φi =
Hi∑

j=1

π̂i,j(β̂i,j + γ̂i,j) . (39)

A large value ofΦi will denote that the respective Gaussian
mixture density does not fit well the underlying density
function of the i-th class training data. Therefore, at each
iteration this measure is used to select the mixture density
that yielded the worst fit according to the following criterion

k = argmax
i=1,...,C

(Φi) , (40)

and the required number of mixture components referring to
this mixture density is increased by one (Hk ← Hk + 1).
Similarly, at each iteration a total nongaussianity measure is
defined for assessing the fitness of the current Gaussian model
with respect to the overall training data set

Φ =
C∑

i=1

p̃iΦi . (41)

The value ofΦ is examined at each iteration, and the iterative
procedure is completed upon the convergence ofΦ to a steady-
state solution. The resulting EM-MSDA algorithm is outlined
in Algorithm 1. Alternatively, a cross-validation criterion can
be used to select the Gaussian model that provides the best
empirical recognition rate.

III. F RACTIONAL STEP MIXTURE SUBCLASS

DISCRIMINANT ANALYSIS

In equivalence to the class separation problem of LDA [29]–
[31], the subclass separation problem may occur when the
dimensionality of the MSDA subspaceD is strictly lower
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Algorithm 1 EM-MSDA
Input: Annotated data setX
Output: Ψ

1: Initialize: H1 = · · · = HC = 1, H = C, Φi (39), Φ (41)
2: repeat
3: Compute class labelk of class to repartition (40)
4: Set:Hk ← Hk + 1
5: Repartitionk-th class toHk subclasses using k-means
6: Initialize the MLE parameterŝθ
7: repeat
8: E-step: Compute responsibilitieshn

i,j (7)
9: M-step: Compute MLEs:Ψ (35), θ̂ (16), (36)

10: until convergence of̂θ
11: Compute nongaussianityΦi for each class (39)
12: Compute total nongaussianityΦ (41)
13: until convergence ofΦ

than the rank of the inter-between-subclass scatter matrix
(D < rank(Sbsb) ≤ min(F,H − 1)). When this happens,
distinct subclasses in the measurement space may not separate
well in the lower dimensional subspace. To demonstrate this
problem we use an artificial dataset of two classes, where, the
first class consists of two Gaussian subclassesN1,1, N1,2, and
the second class is a unimodal GaussianN2,1. The means of
the Gaussian distributions areµ1,1 = [6 22]T , µ1,2 = [0 0]T ,
µ2,1 = [12 22]T , whereas a common covariance matrix is
shared along all distributionsΣ = [0.7 0.3 ; 0.3 0.7], as
depicted in Figure 1. Under these settings, we see that the one-
dimensional projection transformation derived using MSDA
(ψMSDA) causes a large overlap between the subclassesN1,1

andN2,1, which are close to each other, but well separated
in the measurement space. This happens because the large
subclass distanced1,2.2,1 = ||µ1,2 − µ2,1||2 dominates the
MSDA criterion, and, thus, the derived projection transforma-
tion preserves well the separation of the subclassesN1,2 and
N2,1, while, on the other hand, merges the two subclasses that
are close together in the measurement space,N1,1 andN2,1.

Fig. 1. Subclass separationproblem.

To overcome the subclass separation problem, inspired from
[31], we introduce the fractional-step MSDA (FMSDA) that

utilizes the following objective function

JFMSDA(Ψ) =
tr(ΨT ŠbsbΨ)
tr(ΨT Σ̌xΨ)

, (42)

where the inter-between-subclassscattermatrix is modified
using an appropriate weighting functionwi,j.k,l

Šbsb =
C−1∑

i=1

Hi∑

j=1

C∑

k=i+1

Hk∑

l=1

wi,j.k,l(µi,j − µk,l)(µi,j − µk,l)
T ,

(43)
and the modified covariance matrix accordingly becomes
Σ̌x ≡ Šbsb +Sws. The weighting function is a monotonically
decreasing function defined aswi,j.k,l = d−r

i,j.k,l, where,
di,j.k,l = ||µi,j − µk,l||2 is the euclidian distance between
the estimated means of subclasses (i, j) and (k, l), andr is an
integer number larger than two.

The FMSDA algorithm (Algorithm 2) starts with the ap-
plication of the subclass partitioning procedure described in
the previous section (Eqs. (37) to (41)) to derive a subclass
division of the data. Then, the FMSDA criterion (42) is utilized
to initialize the projection transformation matrixΨD ∈ RF×D,
and an iterative algorithm is applied, where at each iterationρ
fractional steps are used for decreasing the dimensionality of
the subspace by one. That is, at thet-th fractional step of the
k-th iteration the data are projected in thek-th dimensional
subspace using the transformation matrixΨk ∈ RF×k, scaled
utilizing the following scaling transformation

ϑ(y, t) =
{

αtyi, i = k
yi, i = 1, . . . , k − 1,

(44)

whereα = exp(− ln(ρ)/(ρ− 1)), and the transformation ma-
trix Ψk is recomputed using the projected and scaled data. At
the end of this fractional procedure the last,k-th eigenvector of
Ψk (i.e., the one that corresponds to the smallest eigenvalue
of Ψk) is discarded. The scaling transformation compresses
the data along the direction of the last eigenvector ofΨk.
This allows the subclass means that are along the direction
of the k-th eigenvector to be increasingly weighted in the
next fractional step, causing thek-dimensional subspace to
reorient so that a useful projection direction is not discarded
at the end of each iteration. A validation set is used to
assess the performance of the derived projection matrixΨk

at each iteration, and the one that provided the best correct
classification rate (CCR) is selected.

The main advantage of FMSDA (and also EM-MSDA)
over kernel variants of LDA is that the projection matrix
still constitutes a linear transformation, which can provide
real time performance during the testing stage. On the other
hand, in contrast to EM-MSDA that tends to optimize the fit
of the subclasses and simultaneously seek the projection that
maximizes the inter-subclass scatter of means, FMSDA derives
an initial subclass structure of the data and gradually attempts
to identify the subspace that provides the best empirical
recognition rate.

IV. K ERNEL MIXTURE SUBCLASS DISCRIMINANT

ANALYSIS

The methods described in the previous sections will still
not perform well when it is not possible to identify a sub-
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Algorithm 2 FMSDA
Input: Annotated setX, validationsetG, parametersρ, r
Output: Ψ

1: Initialize: H1 = · · · = HC = 1, H = C, Φi (39), Φ (41)
2: repeat
3: Compute class labelk of class to repartition (40)
4: SetHk ← Hk + 1 and repartitionk-th class
5: Compute nongaussianity valuesΦi (39) andΦ (41)
6: until convergence ofΦ
7: ComputeΨD (42), setD = rank(Šbsb) (43)
8: Set CCRk = 0, k = 1, . . . , D
9: for k = D to 1 do

10: for t = 0 to ρ− 1 do
11: Project training data:y = ΨT

k x
12: Apply scaling transformation:̃y = ϑ(y, t)
13: ComputeΨ̃ (42) using scaled data
14: Set:Ψk ← ΨkΨ̃
15: end for
16: Discard the last (k-th) column ofΨk

17: Project and classify validation samples usingΨk

18: if samplegj is classified correctlythen
19: CCRk + +
20: end if
21: end for
22: Set:ko = argmaxk(CCRk); Ψ = Ψko

classdivision that results in linearly separable classes [32],
[33]. To deal with such cases, a nonlinear feature mapping
φ(·) : RF 7→ F can be used to map the partitioned data
into some high- or even infinite-dimensional feature spaceF ,
where the data are expected to be linearly separable. Given a
subclass partition of the dataX = [X1,1, . . . ,XC,HC

], where
Xi,j = [x1

i,j , . . . ,x
Ni,j

i,j ] contains the observations of the (i, j)
subclass, the transformation matrixW that maximizes the
MSDA criterion in F can be computed from the following
generalized eigenvalue problem

Sφ
bsbW = Σ̌φ

xWΛφ (45)

where,

Sφ
bsb =

C−1∑

i=1

Hi∑

j=1

C∑

k=i+1

Hk∑

l=1

p̂i,j p̂k,l(µ̂
φ
i,j − µ̂φ

k,l)(µ̂
φ
i,j − µ̂φ

k,l)
T ,

Σ̌φ
x = Sφ

bsb + Sφ
ws, Sφ

ws =
C∑

i=1

Hi∑

j=1

p̂i,jΣ̂
φ
i,j ,

are the inter-between-subclass scatter matrix, the within-
subclass scatter matrix, the modified total sample covariance
matrix, andΣ̂φ

i,j = (1/Ni,j)
∑Ni,j

n=1(φ(xn
i,j)− µ̂φ

i,j)(φ(xn
i,j)−

µ̂φ
i,j)

T , µ̂φ
i,j = (1/Ni,j)

∑Ni,j

n=1 φ(xn
i,j) are the sample co-

variance matrix and the sample mean of(i, j) subclass inF
respectively. To avoid working with the mapped data explicitly
(which may be impossible in case of infinite dimensional
feature spaceF) a kernel function formulated as an inner
product in the feature space satisfying the Mercer’s condition

is used [9]

k(xn
i,j ,x

ν
k,l) = φ(xn

i,j)
T φ(xν

k,l) . (46)

Under mild conditions, any solution ofW must lie in the span
of all the training samples [9], and, thus, it can be represented
by a linear combination of the training samples as

W = Φ(X)Γ (47)

whereΦ(X) = [φ(x1
1,1), . . . , φ(x

NC,HC

C,HC
)] andΓ ∈ RN×C−1

contains the expansion coefficients. Substituting (47) into
(45) and multiplying from the left withΦ(X)T we get
ΦT (X)Sφ

bsbΦ(X)Γ = ΦT (X)Σ̌φ
xΦ(X)ΓΛφ or

Sk
bsbΓ = Σ̌k

xΓΛφ (48)

where we set Sk
bsb = ΦT (X)Sφ

bsbΦ(X), Sk
ws =

ΦT (X)Sφ
wsΦ(X), and Σ̌k

x = Sk
bsb + Sk

ws. The mean and
sample covariance matrix of the(i, j) subclass inF can
be written in matrix product form asµφ

i,j = Φ(Xi,j)pi,j

andΣφ
i,j = (1/Ni,j)Φ(Xi,j)(I−Pi,j)ΦT (Xi,j) respectively,

where,pi,j is aNi,j×1 vector andPi,j is aNi,j×Ni,j matrix
with all elements equal to1/Ni,j . Using the above expressions,
the scatter matrices in (48) can be entirely expressed by the
kernel functions as follows

Sk
bsb =

C−1∑

i=1

Hi∑

j=1

C∑

k=i+1

Hk∑

l=1

pi,jpk,l(Ki,jpi,j −Kk,lpk,l)

×(Ki,jpi,j −Kk,lpk,l)T , (49)

Sk
ws =

1
N

C∑

i=1

Hi∑

j=1

Ki,j(I−Pi,j)KT
i,j (50)

where, Ki,j = ΦT (X)Φ(Xi,j), Ki,j ∈ RN×Ni,j , and,
thus,Γ can be easilycomputedfrom (48) using only kernel
evaluations. The derivedΓ can then be used for the projection
of a test sampleφ(x) in the discriminant subspace using

z = WT φ(x) = ΓT k (51)

where k = [k(x1
1,1,x), . . . , k(x

NC,HC

C,HC
,x)]T and z is the

projection ofφ(x).
The optimal subclass partition of the data is identified by ex-

ploiting the nongaussianity-based iterative algorithm described
in Algorithms 1 and 2. Consequently, the KMSDA algorithm
is presented in Algorithm 3. In certain cases, KMSDA may
provide superior performance in comparison to EM-MSDA
and FMSDA, however, at the cost of much higher computation
time during both the training and testing stage, especially
when large-scale training data sets are used (due to the large
number of kernel evaluations for mapping the observations in
the kernel space, and the associated computational burden of
performing eigenanalysis in this space).

V. EXPERIMENTS

In this section, we use 12 standard benchmarks (defining
in total 19 classification tasks) to compare the proposed
algorithms, EM-MSDA, FMSDA and KMSDA, with various
linear and nonlinear methods, in particular with PCA [41],
LDA [6], FDA [30], MDA [16], SMDA [21], SDA [17],
MSDA [26], KDA [9] and KSDA [33].
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Algorithm 3 KMSDA
Input: Annotated data setX
Output: Γ

1: Initialize: H1 = · · · = HC = 1, H = C, Φi (39), Φ (41)
2: repeat
3: Compute class labelk of class to repartition (40)
4: Set:Hk ← Hk + 1
5: Repartitionk-th class toHk subclasses using k-means
6: ComputeΦi (39) and total nongaussianityΦ (41)
7: until convergence ofΦ
8: ComputeΓ (48)

A. Datasets

For theevaluation we use four datasets that belong to the
UCI repository [42], two datasets from the Gunnar Rätsch’s
Benchmark Datasets [43], and six datasets that have been
widely used for face, object and video shot detection:

Dataset 1: The Monk problem [42] is based on an artificial
dataset of 432 data points inN6

+. Three binary classification
tasks have been defined, i.e., MONK1, MONK2 and MONK3.
For each task, a portion of the data has been randomly selected
for forming the training set, and all 432 samples are used as
the test set. In addition, in the third task5% of the training
data have been annotated wrongly in order to simulate the
effect of random noise contaminating the data.

Dataset 2: The Landsat data set (LSD) consists of 6 classes
(red soil, cotton crop, grey soil, damp grey soil, soil with
vegetation stubble, and very damp grey soil) and 6435 feature
vectors inN36

+ . A partition of the dataset to training set (4435
samples) and test set (2000 samples) is already provided in
[42].

Dataset 3: The Wisconsin diagnostic breast cancer (WDBC)
dataset [42] is used for the recognition of benign and malignant
cells from diagnostic images. This database comprises 569
diagnostic images represented inR30.

Dataset 4: The multi-feature digit dataset (MDD) [42]
consists of ten classes and 200 patterns per class, i.e. 2,000
patterns in total, where each class represents one handwritten
numeral (“0”-“9”). Each pattern is represented in terms of 6
feature sets, extracted from a30×48 binary image, as follows:
a) MDD-pix: 240 pixel averages in2× 3 windows, b) MDD-
fou: 76 Fourier coefficients of the character shapes, c) MDD-
fac: 216 profile correlations, d) MDD-kar: 64 Karhunen-Loève
coefficients, e) MDD-zer: 47 Zernike moments, f) MDD-
mor: 6 morphological features. Each set of features defines
a separate classification task.

Dataset 5: The ETH80 database [44] consists of 8 ob-
ject classes, namely, apples, pears, cars, cows, horses, dogs,
tomatoes, and cups. Each class contains color images of 10
different objects recorded from 41 different views spaced
evenly over the upper viewing hemisphere, i.e., the database
contains 3280 images in total. In our computations the classic
COIL segmentation masks of128×128 pixels size provided in
[44] are employed, resized to25× 30 pixels size and scanned
column-wise to form750-dimensional feature vectors.

Dataset 6: A subset of the MediaMill Challenge dataset

is used for event recognition experiments. It consists of 492
shots belonging to one of five different sport events (baseball,
basketball, football, golf, soccer). Each shot is represented
by a 101-dimensional vector, where theκ-th component of
this vector is in the range[0; 1], expressing the degree of
confidence that theκ-th concept (out of 101 concepts) is
present in the shot [45]. These values are the output of SVM-
based automatic concept detectors, thus represent highly-noisy
data.

Datasets 7-10: Four face datasets were used in our ex-
periments. The Sheffield face database [46] offers 575 gray-
scale cropped facial images of 20 individuals, shown in a
range of poses from profile to frontal views. The AT&T
Database of Faces [47] contains 400 facial images of 40
individuals captured at different times, with varying lighting
conditions, facial expressions, etc. The Extended Yale B
(ExtYaleB) database [48] offers 2432 gray-scale cropped facial
images of 38 individuals under 64 illumination conditions.
The CMU Pose, Illumination, and Expression (PIE) database
[49] is a collection of more than 40,000 facial images of 68
people captured across 13 different poses, under 43 different
illumination conditions, and with four different expressions.
For the Sheffield database, we downscaled the facial images
to size32 × 32 pixels resolution using bicubic interpolation,
and scanned them columnwise to retrieve a set of 575 feature
vectors inR1024. For the rest of the face databases we used
the preprocessed32 × 32 pixels resolution facial image sets
of the Four Face database collection [50], [51].

Dataset 11: The Banana set [52] is a binary class dataset
consisting of 5300 samples inR2. It is an artificial dataset
created using a mixture of overlapping Gaussians.

Dataset 12: The Breast Cancer dataset [52] is a two-class
dataset containing samples of 277 patients inR9 (excluding
the nine samples that contain unknown attribute values).

B. Evaluation

A division of the datasets described in the previous sub-
section to training and test sets is necessary in order to
evaluate the proposed algorithms. Such a division is provided
along with the data for Monk and LSD. For Banana and
Breast Cancer, we used 50 random realizations for training/test
sets for each dataset from the Gunnar Rätsch’s benchmark
collection [52]. Similarly, for AT&T, ExtYaleB and PIE, 30
random realizations from the Four Face database collection
[50], [51] were used, where the training set at each realization
contains 10 images per subject for ExtYaleB and PIE, and
8 images per subject for AT&T. For each of the remaining
datasets, we divided them following standard practices in
similar works of the literature, e.g. [17], [33]. In particular,
we have designedς cross-validation (CV) folds by selecting
randomly$% of the samples of each class at each fold to form
the test set, and used the rest of the samples as the training
set. The number of foldsς and the percentage of test samples
$% for WDBC, MDD, ETH-80, Sheffield, and Mediamill
dataset were set to(ς, $) = (1, 50), (5, 50), (10, 10), (30, 60)
and (30, 20) respectively.

The optimal parameters of each method at each CV fold are
selected using as primary metric the correct classification rate
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(CCR). For this, the global-to-local search strategy is applied
(e.g., see [9]), i.e., after globally searching using a coarse
scale of the parameter space, a candidate interval where the
optimal parameters might exist is retrieved, and then a finer
inspection for identifying the optimal parameters within this
interval is performed. For the subclass methods (SDA, MSDA,
FMSDA, EM-MSDA, KMSDA) we optimize over the number
of subclasses in each class, and consequently over the total
number of subclasses. For the FMSDA method we additionally
require the identification of the exponentr of the weighting
functions in (43) and the number of fractional stepsρ ∈ N+

for decreasing the subspace dimensionality by one. For the
optimization of these parameters we search over the following
values:r = 3, 4, . . . , 16 and ρ = 3, 4, . . . , 20. Similarly, for
the kernel-based methods (KDA, KSDA, KMSDA) we need
to identify the optimal parameters of the kernel functions. In
our experiments we used two types of base kernels: Guassian
radial basis functionk(xi,xj) = exp(−‖xi − xj‖/2σ2), σ ∈
R+, and the polynomial functionk(xi,xj) = ((xixj) + o)%,
o ∈ R, % ∈ N+. For their parameters we search for the optimal
values over the following ranges:o = 0, 1, % = 1, 2, . . . , 8,
σ = 0.1, 0.2, . . . , 4. We should also note that for the datasets
whose number of training observationsN is small compared
to their dimensionalityF (such as the Sheffield and ETH-
80 datasets), the computation of the inverse of the MLE of
the sample covariance matrix (16) by the EM-based meth-
ods, for instance SMDA and EM-MSDA, will be especially
problematic (e.g. see [2], [53]). In these cases, we compute
the inverse using the eigenvalue decomposition of the sample
covariance matrix, keeping only the eigenvalue components
whose eigenvalues are above a specific threshold [2].

The recognition performance of a method regarding a
dataset is measured using the average CCR (ACCR) along
all CV folds, i.e., at each CV fold the maximum correct
classification rate (CCR) for the different set of parameters is
retained, and the CCRs are averaged along all CV folds. Sim-
ilarly, the ground truth labels and the predicted labels at each
CV fold for each algorithm are retained, and the McNemar’s
hypothesis test [54], [55] with a significance level of0.025 is
used to evaluate the statistical significance of the difference
in the performance between each of the proposed algorithms
and any other algorithm used in our experiments. Moreover,
to compare the computational complexity of the algorithms
we recorded the testing and training times in minutes, on a
Intel i7 2.8GHz machine, with respect to one CV fold for
each method and each dataset. Except for MDA and SMDA,
for which their R package implementation [21] is exploited,
all the other algorithms are compared using an unoptimized
Matlab implementation. The FMSDA algorithm was then used
as the baseline algorithm to compute the speedup ratesκ for
theκ-th algorithm usingsκ = Tfmsda/Tκ, whereTfmsda and
Tκ are the training (or testing) time concerning the FMSDA
and theκ-th algorithm respectively.

The ACCRs of the methods along with the average dimen-
sionality in the discriminant subspace are shown in Table I,
while, the results of the statistical significance tests are shown
in Table II. In the latter, a cell contains the symbol+, ? or ∼
for FMSDA, EMMSDA or KMSDA respectively, in order to

denote that the improvement in performance achieved by the
aforementioned methods in comparison to the method corre-
sponding to the column of the table is statistically significant.
Finally, the speedup rate for the training stage (left side of
the comma) and testing stage (right side of the comma) of the
algorithms on each dataset are depicted in Table III, where
higher speedup values indicate faster computations. In every
table we have divided the methods into three groups, namely,
linear, subclass and kernel-based methods. With respect to this
partitioning, for Tables I and III we have used bold digits
and underlined-bold digits to denote the best performance rate
within each group and along all methods respectively.

From Table I we can see that for the majority of the datasets
the best ACCR among the linear subclass methods is provided
by FMSDA (in 10 out of 19 classification tasks of Table I) or
EM-MSDA (again in 10 out of 19 tasks). In overall the best
ACCR among all methods is achieved by KMSDA (in 17 out
of 19 tasks). We should also note that in many cases FMSDA
and EM-MSDA outperform the kernel-based methods as well
(including KMSDA in 2 classification tasks, while they match
KMSDA’s performance in another 2 tasks). Between FMSDA
and EM-MSDA, we observe that the former tends to perform
better when the data dimensionality is larger than the number
of the samples, and at the same time many subclasses are
necessary in order to capture the subclass structure of the data.
In these cases, the training samples per subclass are limited
and consequently the subclass covariance matrices are poorly
estimated [53]. This adversely affects the performance of
EM-based methods. For instance, the performance of SMDA
and EM-MSDA on the ETH80 dataset (which contains 8
object classes and each object class 10 different objects) is
considerably lower than that of FMSDA.

From the results in Table II we can also see that the
performance improvements attained by the proposed methods
are statistically significant for most of the datasets. From Table
III, we additionally see that FMSDA and EM-MSDA provide
systematically lower computation times during the testing
stage among all linear subclass methods (and, as expected
are also faster than the kernel-based methods). This quality
of FMSDA and EM-MSDA is a critical advantage of them,
especially for applications that require real-time or near real-
time processing of large data volumes, such as event detection
in video streams. Summarizing, we observe that the three
proposed methods in most cases outperform the current state
of the art as recently reported for KSDA in [33] and in the
also very recent works [21], [26], at the same time offering
competitive response times during the testing (recognition)
stage.

VI. CONCLUSIONS

Subclass DA methods are attractive alternatives to the
kernel DA variants because they offer fast (often real-time)
computations and comparable recognition performance. Fur-
thermore, combining subclass partitioning and the kernel trick
in a single DA method opens new possibilities for improved
DA effectiveness. MSDA is a very recent subclass method,
that utilizes an effective partitioning procedure to derive a
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TABLE I
RECOGNITION RATES (ACCRS). THE DIMENSIONALITY OF EACH DATASET IS GIVEN IN THE PARENTHESIS NEXT TO THE DATASET’ S NAME.

Linear methods Linear subclass methods Kernel methods
PCA LDA FDA MDA SMDA SDA MSDA FMSDA EM-MSDA KDA KSDA KMSDA

MONK1 (6) 81.4% (6) 69.9% (1) 69.9%(1) 95.6%(6) 93% (6) 84.4%(6) 98.8% (4) 99.8% (3) 96.2% (3) 90.2%(1) 94.4% (5) 99.8% (3)
MONK2 (6) 71.7% (6) 67.3% (1) 67.3%(1) 76.1%(5) 65.3% (3) 84.9%(6) 87.2% (6) 85.2% (5) 90% (6) 81.9%(1) 83.5% (29) 91% (16)
MONK3 (6) 86.8% (6) 85.8% (1) 85.8%(1) 94.1%(6) 89.5% (6) 88.9%(3) 93.0% (3) 94.4% (2) 94.4% (3) 95.8%(1) 94.6% (3) 96.2% (1)
LSD (36) 89.4% (36) 84% (5) 85.2% (5) 88.1%(35) 83.2% (35) 87.8%(17) 89.9% (16) 90.4% (17) 89% (19) 87.1%(5) 89.3% (6) 89.9% (38)
WDBC (30) 89.4%(30) 93.3% (1) 94.7% (1) 96.1%(27) 91.9% (19) 94.7%(15) 96.8% (10) 97.1% (5) 97.2% (8) 93.3%(1) 94.3% (5) 95.4% (5)
MDD-pix (240) 97.5% (240) 94.1% (9) 95.3%(8) 96.4%(105) 96.7% (71) 96.6%(55) 97.8% (70) 97.3% (44) 95.9% (19) 98.5%(9) 98.2% (47) 98.6% (23)
MDD-fou (76) 82.6% (76) 80.4% (9) 80.2%(8) 82.9%(72) 82.6% (64) 81.3%(52) 82.2% (24) 82.7% (13) 83.1% (23) 85.4%(9) 84% (17) 85.9% (12)
MDD-fac (216) 94.4%(213) 97.6% (9) 97.6% (8) 98.2%(63) 97.2% (80) 96.2%(31) 98.3% (29) 98.4% (20) 98.4% (43) 98.2%(9) 95.7% (23) 98.8% (13)
MDD-kar (64) 97.2% (64) 95.7% (9) 95.6%(8) 97.2%(64) 97.3% (55) 97.0%(41) 97.2% (20) 96.8% (15) 97.5% (57) 98.3%(9) 98.1% (23) 98.6% (22)
MDD-zer (47) 81.1% (47) 76.4% (9) 79.3%(8) 83% (47) 83.2% (24) 81.2%(22) 83.2% (22) 82.8% (27) 78.7% (16) 84.0%(9) 83% (23) 84.8% (27)
MDD-mor (6) 59.5%(6) 67.2% (6) 67.3% (4) 67.4%(6) 68.2% (6) 67.5%(6) 68.3% (6) 68.5% (5) 67.6% (6) 65.8%(9) 64.8% (17) 68.7% (33)
ETH80 (750) 83.5% (750) 69.5% (7) 77.1%(7) 79.4%(115) 73.6% (82) 85.1%(73) 86.5% (75) 87% (65) 74.7% (41) 86.9%(7) 83.2% (17) 87.2% (63)
Mediamill (101) 68% (101) 64.9% (4) 63.9% (4) 71.3%(21) 60.2% (9) 69.3%(35) 71.4 (23) 75.8% (31) 72% (27) 74.3%(4) 76.8% (26) 77.5% (24)
Sheffield (1024) 94.9%(236) 95.5% (19) 96.8% (19) 90.3%(39) 95.2% (74) 97.2%(31) 97.6% (24) 98.5% (18) 97.3% (34) 98% (19) 98.5% (31) 98.5% (23)
A&T (1024) 92.5%(319) 96.1% (39) 97.8% (33) 93.5%(81) 95.4% (81) 97.7%(47) 98.3% (44) 98.9% (29) 98.9% (39) 97.9%(39) 98.9% (47) 99.4% (40)
ExtYaleB (1024) 53.4%(379) 85.6% (37) 85.6% (35) 73.3%(75) 66.2% (39) 86.5%(71) 86.7% (48) 87.7% (40) 87.8% (37) 85.5%(37) 87.9% (48) 89.9% (39)
PIE (1024) 44.4%(679) 77.6% (67) 79.8% (41) 82.1%(105) 62.6% (69) 80% (67) 84.9% (85) 86.5% (66) 86.1% (67) 85.1%(62) 83.7% (67) 86.7% (74)
Banana(1024) 68.4% (2) 57.2% (1) 63.7%(1) 88.3%(4) 88.3% (2) 86.2%(2) 88.4% (2) 88.3% (2) 88.9% (2) 88.8%(1) 88.4% (3) 89.5% (4)
B. Cancer(1024) 67.6% (9) 65.2% (1) 65.2%(1) 71.4%(4) 69.4% (2) 70.4%(4) 73.9% (7) 75.3% (7) 77.9% (9) 74.7%(1) 74.6% (3) 79.2% (3)

TABLE II
STATISTICAL SIGNIFICANCE RESULTS. SYMBOLS +, ∗,∼ DENOTE THAT THE IMPROVEMENT IN PERFORMANCE ACHIEVED BYFMSDA (+), EMMSDA

(∗), OR KMSDA (∼) IN COMPARISON TO THE METHOD OF A GIVEN COLUMN IS STATISTICALLY SIGNIFICANT.

Linear methods Linear subclass methods Kernel methods
PCA LDA FDA MDA SMDA SDA MSDA KDA KSDA

MONK1 +, ∗,∼ +, ∗,∼ +, ∗,∼ +,∼ +,∼ +, ∗,∼ +, ∗,∼ +,∼
MONK2 +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ ∗,∼ ∗,∼ ∗,∼
MONK3 +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼
LSD +, ∗,∼ +, ∗,∼ +, ∗,∼ +,∼
WDBC +, ∗,∼ +, ∗
MDD-pix ∼ +,∼ ∼ ∼ ∼ ∼
MDD-fou ∼ +, ∗,∼ +, ∗,∼ ∼ ∼ +, ∗,∼ ∼ ∼
MDD-fac +, ∗,∼ +, ∗,∼ +, ∗,∼ ∼ +, ∗,∼ +, ∗,∼ ∼ ∼ +, ∗,∼
MDD-kar ∼ +, ∗,∼ +, ∗,∼ ∼ ∼ ∗,∼ ∼ ∼
MDD-zer +,∼ +, ∗,∼ +,∼ ∼ ∼ +,∼ ∼ ∼
MDD-mor +, ∗,∼ +,∼ +,∼ +,∼ +,∼ +,∼ +,∼
ETH80 +,∼ +, ∗,∼ +,∼ +,∼ +,∼ +,∼ +,∼
Mediamill +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗ +, ∗,∼ +, ∗ +, ∗ +, ∗
Sheffield +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +,∼ +,∼ +,∼
A&T +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ ∼ +, ∗,∼ ∼
ExtYaleB +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ ∼
PIE +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼
Banana +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ ∗,∼ ∗,∼ +, ∗,∼
B. Cancer +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼ +, ∗,∼

TABLE III
TRAINING AND TESTING SPEEDUP RATES.

Linear methods Linear subclass methods Kernel methods
PCA LDA FDA MDA SMDA SDA MSDA FMSDA EM-MSDA KDA KSDA KMSDA

MONK1 15.19,0.13 34.07, 1 1.79,0.89 11.81, 0.56 4.20, 0.57 6.74,0.98 3.51, 1.09 1,1 2.87,0.92 3.08, 0.59 0.20,0.65 0.18, 0.64
MONK2 10.19,0.12 35.74, 0.94 2.07,0.88 12.12, 0.58 7.84, 0.45 8.98,0.94 4.46, 0.94 1, 1 1.32,1.18 3.18, 0.59 0.13,0.55 0.13, 0.58
MONK3 15.96,0.13 35.86, 1 2.13,0.91 12.7, 0.83 4.45, 0.65 8.74,0.99 4.05, 0.95 1, 1 3.54,1.25 3.03, 0.54 0.21,0.65 0.19, 0.62
LSD 331.16,0.76 564.22, 1.32 8.68,1.42 37.59, 0.98 6.71, 0.64 30.89,0.99 9.30, 0.97 1,1 2.20, 0.96 0.07, 0.52 0.01,0.46 0.01, 0.43
WDBC 23.10,0.10 54.40, 1.06 2.60,0.76 5.75, 0.17 0.18, 0.15 4.85,0.94 3.43, 0.99 1, 1 1.32,1.06 1.29, 0.45 0.03, 0.46 0.03,0.47
MDD-pix 410.92,0.33 1136.07, 1.63 6.04,1.41 13.41,0.06 1.1, 0.37 14.86, 0.73 1.29, 0.78 1, 1 3.57,1.13 3.02, 0.39 0.17,0.35 0.03, 0.35
MDD-fou 517.16,0.65 934.62, 1.27 3.23,1.20 9.18,0.07 1.18, 0.61 20.41, 0.61 6.46, 0.99 1,1 3.68, 0.98 1.31, 0.38 0.07,0.35 0.01, 0.34
MDD-fac 169.54,0.30 357.92, 1.40 2.22,1.24 4.06,0.05 0.39, 0.4 6.44, 0.78 1.61, 0.95 1,1 1.35, 0.96 1.05, 0.34 0.06,0.31 0.01, 0.31
MDD-kar 181.93,0.65 339.60, 1.27 1.06,1.11 2.96,0.07 0.48, 0.62 7.96, 0.60 2.68, 0.91 1,1 1.07, 0.85 0.39, 0.36 0.02,0.32 0.01, 0.32
MDD-zer 212.70,0.80 296.79, 1.09 1.22,1.13 3.62,0.09 0.79, 0.89 10.64, 0.93 2.13, 0.88 1,1 3.40, 0.96 0.46, 0.4 0.02,0.34 0.01, 0.34
MDD-mor 389.80, 1.03 347.17, 1.06 1.85,1.13 6.41,0.15 8.13, 0.21 15.87, 0.87 0.65, 0.37 1, 1 3.09, 0.82 0.34, 0.33 0.02,0.35 0.01, 0.30
ETH80 380.92,0.09 1123.13, 1.19 13.31,2.09 21.85, 0.23 1.12, 1.07 7.14,1.02 1.18, 1.05 1, 1 0.51,1.08 1.37, 0.32 0.03,0.28 0.01, 0.28
Mediamill 168.18,0.06 305.82, 1.78 5.47,1.17 19.42,0.1 64.88, 0.41 21.80, 0.92 10, 1.02 1, 1 2.13,1.04 4.32, 0.53 0.14,0.47 0.05, 0.47
Sheffield 470.65,0.12 678.09, 0.99 1.09,0.58 62.25, 0.08 3.72, 0.06 6.53,0.26 18.14, 0.98 1,1 2.52,0.99 74.04, 0.39 12.33,0.38 4.30,0.39
A&T 2470.1,0.31 3169.4, 0.93 0.5, 0.87 131.33, 0.09 1.95, 0.19 1.47,0.79 0.83, 0.82 1,1 0.61,0.93 27.34, 0.36 1.38,0.25 1.29, 0.34
ExtYaleB 510.28,0.27 919.18, 0.92 0.72,1.13 22.76, 0.09 3.65, 0.09 6.29,0.66 1.32, 0.74 1, 1 0.59,1.02 16.47, 0.47 3.17,0.36 1.53, 0.4
PIE 472.67,0.12 2115.13, 0.97 0.47,1.03 54.84, 0.38 5.77, 0.31 13.36,0.99 0.61, 0.74 1,1 1.81,1 44.09, 0.49 2.22,0.43 1.39, 0.34
Banana 11.98, 0.93 7.65,1.1 0.74,1.1 50.79, 0.54 15.63, 0.83 2.29,0.99 1.34, 0.99 1,1 0.59, 0.98 0.17, 0.69 0.04,0.59 0.03, 0.49
B. Cancer 21.67,0.4 40.2, 1.17 3.14,1.14 37.8, 0.23 3.37, 0.63 21.07,1.04 9.06,0.94 1, 1 0.33, 0.90 0.43, 0.25 0.27,0.18 0.08, 0.18

Gaussianhomoscedasticdivision of the data. In this work,
we extended MSDA in three different ways: a) EM-MSDA
was derived by linking MSDA with the Guassian mixture
model, b) FMSDA was proposed in order to solve the so-called
subclass separation problem, and c) KMSDA was presented
for separating categories with nonlinearly separable subclasses
using the kernel trick. The effectiveness of the three proposed
DA methods was verified by extensive experimentation on
various publicly available standard benchmarks.

Our methods could also be extended and used in additional
related problems, such as feature selection. Typically, this is
an application domain for methods such as support vector

machines [56]. Recently, a feature selection method based on
LDA was proposed in [57]. This method ranks each feature
using the sum of the eigenvectors of the LDA projection
matrix. In a similar fashion FMSDA could be easily modified
to rank and discard instead of the least discriminant dimension
the least significant feature at each iteration. We plan to
investigate this possibility, as well the possibility of extending
the proposed methods for signature-based classification, taking
advantage of the work described in [58].
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APPENDIX A
DERIVATION OF EQUATIONS IN SECTION II

A. Derivation of Eqs. (6) and (7)

The Gaussian mixture distribution concerning thei-th class
in (5) can be derived in terms of latent variables [36],
[37], as described in the following. LetZi ∈ RHi be a
categorical latent random vector concerning thei-th class,
whose parameter spaceZi is the standard base ofRHi , i.e.,
Zi = {ei,1, . . . , ei,Hi}, where only thej-th element of the unit
vector ei,j is equal to one and all other elements are equal
to zero. Settingp(Zi = ei,j) = πi,j and p(x|Zi = ei,j) =
N (x|µi,j) the marginal and conditional densities,p(zi) and
p(x|zi), are expressed in terms of the mixing coefficients
and mixture components respectively,p(zi) =

∏Hi

j=1 π
zi,j

i,j ,

p(x|zi) =
∏Hi

j=1N (x|µi,j)zi,j . Thus, using the product rule
of probability we can express thei-th class-conditional joint
density as

p(x, zi|ωi) = p(zi|ωi)p(x|zi, ωi) = p(zi)p(x|zi)

=
Hi∏

j=1

(πi,jN (x|µi,j))
zi,j , (52)

where we have used the fact thatx is conditionally indepen-
dent of ωi given zi, and zi is independent ofωi. The i-th
class-conditional marginal distribution ofx can then be written
as

p(x|ωi) =
∑
zi

p(x, zi|ωi) =
Hi∑

j=1

πi,jN (x|µi,j), (53)

which is a Gaussian mixture equivalent to (5), and, using the
Bayes’ rule the posterior distribution is also derived

p(zi|x, ωi) =

∏Hi

j=1(πi,jN (x|µi,j))zi,j

∑Hi

j=1 πi,jN (x|µi,j)
. (54)

Therefore,under the i.i.d.assumption,the likelihood of the
complete data set is expressed as (p.108, [27])

p(X,Z|θ) =
C∏

i=1

Ni∏
n=1

p(xn
i , zn

i |ωi)

=
C∏

i=1

Ni∏
n=1

Hi∏

j=1

(πi,jN (xn
i |µi,j))

zn
i,j . (55)

while the posterior distribution takes the form

p(Z|X, θ) ∝
C∏

i=1

Ni∏
n=1

Hi∏

j=1

(πi,jN (xn
i |µi,j))

zn
i,j , (56)

whereZ = {Z1, . . . ,ZC} is the set of all categorical vectors.
Observing that the posterior distribution is independent over
zn
i,j , the expectation of the categorical variables can be derived

E[zn
i,j ] =

∑Hi

j=1 zn
i,j(πi,jN (xn

i |µi,j))
zn

i,j

∑Hi

j=1 πi,jN (x|µi,j)
, (57)

and simplifying the above, we arrive to the definition of the
responsibilities in (7).

Moreover, from (56) the log likelihood of the complete data
set is retrieved

ln p(X,Z|θ) =
C∑

i=1

Ni∑
n=1

Hi∑

j=1

zn
i,j(ln πi,j + lnN (xn

i |µi,j)) .

(58)
Applying the expectation operator to the above expression and
substitutingE[zi,j,n] from (7) the expectation of the complete
data log-likelihood is expressed as

E[ln p(X,Z|θ)]

=
C∑

i=1

Ni∑
n=1

Hi∑

j=1

hn
i,j(lnπi,j + lnN (xi,n|µi,j ,Σ))

=
C∑

i=1

Hi∑

j=1

Ñi,j ln πi,j − NF

2
ln(2π) +

N

2
ln |Σ−1|

−1
2

C∑

i=1

Ni∑
n=1

Hi∑

j=1

hi,j,n(xi,n − µi,j)
T Σ−1(xi,n − µi,j) .

(59)
Using the identity(xn

i − µi,j)T Σ−1(xn
i − µi,j) = (xn

i −
x̄n

i )T Σ−1(xn
i −x̄i,j)+(x̄i,j−µi,j)T Σ−1(x̄i,j−µi,j)+2(xn

i −
x̄i,j)T Σ−1(x̄i,j − µi,j) along with the fact that

∑Ni

n=1(x
n
i −

x̄i,j)T Σ−1(x̄i,j − µi,j) = 0, and multiplying both sides by
two, we arrive to (6).

B. Derivation of Eq. (18)

The constraint that the mixing coefficients should sum to
one can be incorporated in (17) usingC lagrange multipliers
ηi, i = 1, . . . , C. Therefore, we need to find the stationary
point of

C∑

i=1

Ni∑
n=1

Hi∑

j=1

hn
i,j(lnπi,j + lnN (xn

i |µi,j))

+
C∑

i=1

ηi(
Hi∑

j=1

πi,j − 1)

(60)

with respect toπi,j andηi. Optimizing overπi,j we arrive to
Ñi,j/πi,j + ηi = 0. If we multiply both sides withπi,j and
sum over all subclasses of thei-th class we getηi = −Ni.
Eliminating ηi we obtain (18).
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