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Abstract—In this paper, we introduce Masked Feature Mod-
elling (MFM), a novel approach for the unsupervised pre-
training of a Graph Attention Network (GAT) block. MFM
utilizes a pretrained Visual Tokenizer to reconstruct masked
features of objects within a video, leveraging the MiniKinetics
dataset. We then incorporate the pre-trained GAT block into
a state-of-the-art bottom-up supervised video-event recognition
architecture, ViGAT, to improve the model’s starting point and
overall accuracy. Experimental evaluations on the YLI-MED
dataset demonstrate the effectiveness of MFM in improving event
recognition performance.

Index Terms—masked image modelling, masked feature mod-
elling, graph, attention, event recognition

I. INTRODUCTION

In recent years, Vision Transformers (ViTs) have emerged
as a dominant approach in video and image analysis, grad-
ually surpassing Convolutional Neural Networks in various
applications. However, one key challenge faced by ViTs is
their requirement for abundant data and extensive annotations
to achieve optimal training results. To tackle this annotation-
hungry nature of ViTs, several techniques were studied, such
as Transfer Learning and, more recently, Masked Image Mod-
elling (MIM) and other self-supervised pre-training techniques
[2], [3]. The primary objective of MIM is to learn to recon-
struct the masked patches of an image in order to capture
comprehensive contextual information using a representation
model, as e.g. in the case of BEiT [4], where the pretraining
process involves utilizing two different views of each image:
image patches and visual tokens. Although studied in the
image domain, masking has not yet been thoroughly explored
in video event recognition or video-related tasks in general.

We present a new approach called Masked Feature Mod-
elling (MFM), particularly tailored to videos (Fig.1). In sum-
mary, our major contributions are:

• We are the first, to the best of our knowledge, to apply
vector-quantized visual tokenizer MFM techniques [5] to
extracted object features within videos for unsupervised
pretraining of Graph Attention Networks.
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• We show that the Graph Attention Networks pretrained
through the proposed MFM technique can provide im-
provements in event recognition accuracy in video.

II. RELATED WORK

This brief survey of related work touches upon the three
domains that are most closely related to this work: a) Transfer
Learning and Unsupervised Pre-Training, b) Masked Image
Modelling and c) Video Event Recognition.

Transfer Learning (TL) [6] leverages learned feature maps
from models trained on large datasets, offering benefits in
downstream tasks (reduced training time, improved perfor-
mance). One possible TL approach is Weight Initialization;
this has shown promising results in various applications, e.g.
[7]. Unsupervised pretraining, as in e.g. [8], allows learning
these initial weights of the deep network by training on large
volumes of unlabeled data.

Under the unsupervised pretraining paradigm, Masked Im-
age Modeling (MIM) is a technique that leverages the recon-
struction of masked image content to learn new representa-
tions. Recently, this approach has been applied in training
ViTs, as in BEiT [4], which introduces the prediction of
discrete visual tokens as a key element. In the video domain,
MIM has been used in [9], [10], [11]. However, none of these
previous studies explored feature masking in images or videos.

In Video Event Recognition, two dominant directions have
emerged: i) training a Transformer or similar network from
scratch using images or video frames, as in e.g. [12], and ii) in
order to reduce computational cost, utilize pretrained models
to extract feature representations, which are then fed into
the respective classifier models, as in e.g. [13]. Two notable
approaches of the latter category are ViGAT [1], depicted in
Fig.2, and its faster approximation Gated-ViGAT [14], which
incorporate an object detector to extract bottom-up (object)
information from video frames. The extracted objects and
frames are processed by a pretrained ViT backbone [15] to
derive feature representations; and, these are fed to a trainable
attention-based head network made of three Graph Attention
Network (GAT) blocks, ω1, ω2 and ω3, to recognize and
explain events within the video.
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Fig. 1. An illustration of the main contribution of our paper, training a Graph Attention (GAT) block, ωt [1] through Masked Feature Modelling and Tokens.
Initially, we detect the objects within a video frame, pass them through the feature extractor to acquire object-level features. In parallel, a Tokenizer creates
object-level token vectors of the objects based on their cosine similarity to a predefined Visual Vocabulary, to subsequently generate a video-level token vector,
which is used as supervision in our unsupervised architecture. In each training iteration, a portion (e.g. 40%) of the extracted object-level features are masked
and the modified set of features is fed through ωt and a fully connected (FC) layer. The binary cross-entropy loss is used for the unsupervised training, with
the help of the generated token, of the trainable components of this architecture: ωt and FC.

In this paper, our goal is to (pre-)train the GAT blocks
of ViGAT (Fig.2) without supervision. Building upon the
weight-sharing technique described in [1], we accomplish
this by training a new GAT block ωt using local (i.e. ob-
ject) information and without supervision; and, subsequently,
utilizing the pretrained ωt to initialize one or more GAT
blocks of ViGAT. For unsupervised training on a large source-
dataset, we apply masked feature modelling using the Vision
Tokenizer introduced in [4]. Once this unsupervised training
is completed, we initialize the selected GAT blocks of ViGAT
with our ωt and conduct supervised training and evaluation in
a video-event recognition task on a small target-dataset. We
should note that the object-centric transformer presented in
[16] also utilizes object features and a masked unsupervised
pretraining step. However, in contrast to [16] that utilizes a
self-supervised contrastive loss (InfoNCE [17]) at scene level,
here we use a pretrained vector-quantized visual tokenizer
with a cross-entropy loss [5]. The latter approach puts more
emphasis on local- (in our case object-) level reconstruction.
This design choice is motivated by recent results in the image
classification domain, which showed that BEiT v2 (utilizing a
vector-quantized visual tokenizer) clearly outperforms MoCo
v3 that is based on the InfoNCE loss [18] (see Table 2 in [5]).

III. PROPOSED METHOD

Our method comprises an object detector, a feature extrac-
tor, a Visual Tokenizer, and a GAT block referred to as ωt.
ωt adopts the structure defined in [1], i.e. it is made of an
attention mechanism, a GAT head of two layers, and a graph
pooling stage; the interested reader is referred to [1] for details
on the GAT block structure. In the core of our method is the
training of ωt using tokens generated from a Visual Tokenizer
[5], in conjunction with a novel unsupervised approach based
on MIM that utilizes features instead of images, called Masked
Feature Modelling (MFM).

To acquire object-level features, we utilize the method em-
ployed in [1]. That is, a video is represented with a sequence of
N frames, and an object detector along with a feature extractor
is used to obtain matrix X(n) ∈ RK×F representing frame n,

X(n) = [x
(n)
1 , . . . ,x

(n)
K ]T , (1)

where K is the number of objects extracted from each frame,
x
(n)
k ∈ RF is the feature embedding for object k in frame n.
In order to achieve unsupervised learning, we utilize the

pretrained Visual Tokenizer [5]. As seen in Fig.1, by feeding
an object image into the Tokenizer, we obtain new represen-
tations, called tokens, that serve as valuable supervision for
our procedure. The Tokenizer consists of a vision Transformer
encoder, a quantizer and a visual vocabulary (Codebook)
containing L distinct embeddings. Inside the Tokenizer, the
object images are partitioned to Q patches, and each patch is
transformed to an embedding h

(n)
j,k , which corresponds to the

jth patch of the kth object of frame n. Then the quantizer
looks up the nearest neighbor in the visual vocabulary for
each representation h

(n)
j,k , according to cosine similarity, and

thereby produces the respective visual token vector z
(n)
j,k =

[z
(n)
1,j,k, . . . , z

(n)
L,j,k]

T , where, z(n)i,j,k ∈ {0, 1}, and z
(n)
i,j,k equals 1

if the jth patch of the kth object in the nth frame belongs to
the ith codebook embedding, and 0 otherwise. A visual token
vector v for the overall video is then obtained using

u =

N∑
n=1

K∑
k=1

Q∑
j=1

z
(n)
j,k , (2)

and the function topr that returns 1 for the r largest elements
of u and 0 for the rest,

v = topr(u). (3)

To proceed with the unsupervised training, given the feature
matrix X(n), we mask Γ% of the objects in each frame

x
(n)
k = δ(k ∈ M)p+ (1− δ(k ∈ M))x

(n)
k , (4)
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Fig. 2. The block diagram of ViGAT [1]. We adopt this method for the supervised video event recognition task. It encompasses an object detector, a feature
extractor, and the ViGAT head. The ViGAT head consists of three Graph Attention Network (GAT) blocks (ω1, ω2, ω3) responsible for processing global
(frame-level) and local (object-level) features. Finally, a pair of event classification layers utilize the video-level feature vectors coming out of GAT blocks
ω1 and ω3 to recognize the event occurring in the video.

where, δ() is the indicator function, p ∈ RF is a shared
learnable object feature embedding and M is the set of object
indices k, randomly selected to be masked. The resulting,
so-called masked feature matrix X̃(n), is processed by ωt to
produce a latent representation in its output; and then, a FC
layer of F inputs and L outputs, equipped with an appropriate
nonlinearity (e.g. sigmoid), is utilized to transform the output
of ωt to a score vector g ∈ RL, containing L score values
with respect to the codebook vocabulary for the overall video.
The standard cross-entropy loss is then used to compute the
dissimilarity between g and the visual token vector v.

In this way, using a large unlabelled video dataset, the GAT
block ωt can be trained effectively in an entirely unsupervised
manner. Subsequently, it can be used for initializing and re-
training a supervised event-recognition architecture (ViGAT)
on a smaller target-dataset, to effect knowledge transfer.

In the supervised event-recognition task, we utilize the
pretrained ωt to initialize one or both of ω2 and ω3 depicted
in Fig.2. The entire ViGAT architecture is then trained on the
YLI-MED dataset.

IV. EXPERIMENTS

A. Datasets and experimental setup

We use two established, publicly available video datasets:
i) MiniKinetics [19] is a subset of Kinetics [20]. It com-

prises 200 action classes, 121215 training and 9867 testing
video clips. Each clip, sampled from a distinct YouTube video,
has a duration of 10 seconds and is annotated with a single
event/action class label. We utilize this as the source dataset,
i.e. for training ωt in an unsupervised way without using the
existing class-label annotations, as illustrated in Fig.1.

ii) YLI-MED [21] is a video corpus based on YFCC100M,
containing 1823 videos and 10 event categories. The dataset
is divided into standard training and testing partitions of 1000
and 823 videos, respectively. We employ this much smaller
dataset as the target one, i.e. for supervised learning, taking
advantage of the previously trained ωt as illustrated in Fig.2.

In order to accurately represent each video within the two
datasets, we initially employ uniform sampling, resulting in

a sequence of N = 9 or N = 25 frames (depending on
the experiment) for YLI-MED and N = 30 frames for
MiniKinetics. Our approach consists of the following:

i) An object detector named Detic [22], which is pretrained
on ImageNet21K and fine-tuned on the CoCo dataset.

ii) A ViT-L/14-Clip backbone, utilizing the OpenAI CLIP
model [23] for the extraction of object- and frame-level
features. This backbone utilizes a 14× 14 grid to patchify the
input image, i.e., Q = 142 patches are produced per frame;
the derived feature embeddings’ dimension is F = 1024.

iii) The pretrained Visual Tokenizer provided in [5] with
Codebook size L = 8192.

For object detection, we set the number of objects K to be
extracted as 50. For the masking procedure we set Γ = 40%.
Our unsupervised architecture for pretraining ωt (Fig.1) was
trained on MiniKinetics for 200 epochs (with learning rate
initially set to 10−3 and subsequently multiplied by 0.1 at
epochs 50 and 100).

Then, our supervised event recognition architecture (Fig.2)
was trained on the YLI-MED dataset for 200 epochs (with
learning rate initially set to 10−4 and subsequently multi-
plied by 0.1 at epochs 60 and 110). The same training was
performed on either the local branch alone or the entire
architecture, depending on the experiment.

In alignment with the relevant literature, top-1 accuracy is
used as evaluation metric on YLI-MED.

B. Event recognition results

We evaluate the performance of our unsupervised pretrained
GAT block ωt, by using it for the initialization of GAT blocks
in our supervised event-recognition architecture ViGAT, on
the YLI-MED dataset. The upper part of Table I shows our
experiments using just the local branch of the entire ViGAT
architecture, as depicted in Fig.2. To study the behavior of ωt

and minimize the influence of frame-level features, we used a
small number of frames in this experiment, specifically N = 9.
The results demonstrate that our pretrained ωt outperforms the
randomly initialized GAT blocks by 0.58%.
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TABLE I
EVALUATION OF THE USE OF THE UNSUPERVISED PRETRAINED GAT

BLOCK ωt FOR WEIGHT INITIALIZATION IN VIGAT (FIG.2), ON
YLI-MED, EXCLUDING OR INCLUDING VIGAT’S GLOBAL BRANCH.

N ω1 ω2 ω3 top-1(%)

9
- Rand Init Rand Init 87.12
- Pretr. ωt Pretr. ωt 88.70

25
Rand Init Rand Init Rand Init 90.77
Rand Init Pretr. ωt Pretr. ωt 91.62

TABLE II
ABLATION STUDY DEPICTING THE TOP-1 ACCURACY OF THE LOCAL

BRANCH OF VIGAT ON YLI-MED THROUGHOUT DIFFERENT SCENARIOS
OF USING NO TRAINABLE COMPONENTS, A PRETRAINED ωt OR A

RANDOMLY INITIALIZED GAT BLOCK.

weight
ω2 ω3 sharing top-1(%)
Mean Pooling Mean Pooling no 80.92
Pretrained ωt Rand Init no 85.18
Rand Init Mean Pooling no 86.51
Rand Init Rand Init yes 87.12
Pretrained ωt Mean Pooling no 88.34
Pretrained ωt Pretrained ωt yes 88.70

We also experimented with the complete ViGAT supervised
event-recognition architecture of Fig 2, using a total of N = 25
frames for both the local and global branches (to allow also
the global branch to effectively learn). As presented in the
lower part of Table I, by utilizing the unsupervised pretrained
ωt for the initialization of the local-branch GAT blocks,
ViGAT yields a significant improvement of 0.85% compared
to using randomly initialized GAT blocks. This highlights
the effectiveness and potential of unsupervised pretraining in
capturing meaningful representations.

C. Ablation Study

In Table II we compare different variants of our model by
substituting the GAT blocks initialized with ωt with alternative
training approaches or a simple non-trainable mean pooling.
These comparisons specifically focus on the local branch of
the ViGAT architecture of Fig.2 (setting N = 9), in order to
evaluate the effectiveness of knowledge transfer. We observe
that utilizing ωt for initializing both the objects- and the
frames-GAT blocks, ω2 and ω3, where these two GAT blocks
also share weights during the subsequent training on YLI-
MED, is the best-performing strategy. It yields significantly
improved results compared to either using a single randomly
initialized GAT block or relying on randomly initialized GAT
blocks for both objects and frames.

V. CONCLUSION

In this paper, we introduced Masked Feature Modelling
(MFM), and demonstrated the use of MFM for the unsu-
pervised pre-training of a key component of the state-of-
the-art ViGAT event recognition method. Our results showed
that using the outcome of unsupervised pre-training for the
initialization of certain blocks of ViGAT enables the latter to
reach higher accuracy in a downstream task, i.e. when further
trained in a supervised way on a small target dataset for event

recognition. We believe that this work contributes to advancing
our understanding of the benefits and applications of masking
techniques in video analysis; and, that such Masked Feature
Modelling can be widely applicable in various video classi-
fication problems, when the employed learning architecture
leverages “features” (typically, visual information embeddings
generated by pre-trained deep networks).
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