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ABSTRACT
This paper presents a new reinforcement-based method for
video thumbnail selection (called RL-DiVTS), that relies on
estimates of the aesthetic quality, representativeness and vi-
sual diversity of a small set of selected frames, made with
the help of tailored reward functions. The proposed method
integrates a novel diversity-aware Frame Picking mechanism
that performs a sequential frame selection and applies a re-
weighting process to demote frames that are visually-similar
to the already selected ones. Experiments on two bench-
mark datasets (OVP and YouTube), using the top-3 matching
evaluation protocol, show the competitiveness of RL-DiVTS
against other SoA video thumbnail selection and summariza-
tion approaches from the literature.

Index Terms— Video thumbnail selection, reinforcement
learning, aesthetic quality, representativeness, diversity

1. INTRODUCTION

Over the last years there is a tremendous growth of videos
over the Web. To facilitate users’ navigation in data col-
lections, most video sharing platforms and social networks
represent each video, in their data browsing interfaces, using
one or a few thumbnails. However, manually selecting good
thumbnails is a tedious and time-consuming process, as it re-
quires a careful inspection of the entire content by a human
editor. To accelerate this process, several methods have been
proposed over the last years. Early approaches were based on
rules about the optimal video thumbnail and extracted low-
level (e.g., luminance) and mid-level features (e.g., appear-
ance of faces) to assess frames’ alignment with these rules
[1, 2, 3]. More recent methods focused on specific character-
istics of the video frames, such as their representativeness and
aesthetic quality, and were based either on traditional feature
extraction and clustering algorithms [4, 5, 6], or on the use
of deep network architectures [7, 8, 9]. Finally, a few mul-
timodal approaches take into account the users’ intentions,
expressed as textual queries [10, 11, 12].
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Contrary to existing approaches that use similar thumb-
nail selection criteria [7, 9, 4], we propose a new method that
considers also the frames’ diversity during the selection and
evaluation of video thumbnails. Moreover, instead of assess-
ing frames’ representativeness using Autoencoders [7], Gen-
erative Adversarial Networks (GANs) [9], or data clustering
algorithms [4], our method uses a tailored reward function.
Finally, the proposed method is the first to learn the video
thumbnail selection task based on reinforcement learning and
a set of reward functions. Our contributions are as follows:

• We introduce the use of reinforcement learning to learn
video thumbnail selection based on rewards about the
frames’ aesthetics, representativeness and diversity.

• We design a new Frame Picking mechanism that takes
into account the frames’ diversity and discourages the
selection of visually-similar frames.

• We integrate the designed Frame Picking mechanism in
a novel network architecture, that learns how to select a
diverse set of aesthetically-pleasing and representative
video thumbnails, based on reinforcement learning.

2. RELATED WORK

In this section we focus on visual-based approaches as these
are more closely related to the proposed method. Early works
relied on hand-crafted rules on what indicates a good video
thumbnail, and tailored features to assess frames based on
these rules. Lian et al. [1] considered the appearance of
faces, the variance of luminance and color diversity. Zhang
et al. [2] took into account the frames’ blurriness, visual
saliency and pair-wise similarities. Choi et al. [3] defined
cost functions to penalize frames with restricted appearance
of faces/objects and blurred/shaky content. Song et al. [4]
used low-level features (e.g. luminance, sharpness) to filter-
out low-quality frames, and assessed the representativeness
and aesthetics of the remaining ones based on data clustering
and a stillness value, respectively. Tsao et al. [5] estimated
the frames’ attractiveness based on low- (e.g. sharpness, satu-
ration) and high-level factors (presence of subtitles/persons).
However, defining a complete set of rules for selecting good
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Fig. 1. The RL-DiVTS network architecture. Orange boxes indicate pretrained components and gray boxes denote trainable
components and white boxes correspond to reward functions. Dashed lines represent iterative processes during a training epoch.

video thumbnails and extracting features for evaluating the
frames against these rules, is a complex task.

To overcome the above shortcoming, recent works fo-
cused on a few commonly-desired features of video thumb-
nails, and examined the learning efficiency of deep networks.
Gu et al. [7] assessed the frames’ aesthetic quality using a
CNN estimator pretrained on the AVA dataset [13], and eval-
uated their representativeness using a trainable Autoencoder
and a thumbnail-to-video reconstruction process. Arthurs
et al. [14] trained a variation of AlexNet [15] for classify-
ing frames into good and bad thumbnails, and showed that
adaptations of modern CNN classifiers can exhibit human-
level performance on the aforementioned classification task.
Pretorious et al. [16] performed a more extensive compar-
ison of various CNNs for video thumbnail selection, using
thumbnails of movies and TV series. Ren et al. [17] trained
a Siamese CNN using annotations about the frames’ ranking
based on their representativeness and considering facial-
related features. Finally, in [9] we utilized an LSTM-based
adversarially-trained discriminator to measure the represen-
tativeness of the selected thumbnails, and combined its feed-
back with estimates about the thumbnails’ aesthetics. How-
ever, these works rely on costly ground-truth data [14, 16, 17]
or computationally-demanding network architectures [7, 9].

3. PROPOSED APPROACH

Network architecture: An overview of the RL-DiVTS net-
work architecture is shown in Fig. 1. Given a video of T
frames, at training time the Thumbnail Selector assesses the
aesthetic quality and importance of each frame with the help
of two estimators. The Aesthetic Estimator is a Fully Convo-
lutional Network (FCN) proposed in [18], trained on the AVA
dataset [13]. The assessment is done on a per frame basis and
results in a sequence of scores that quantify the aesthetic qual-
ity of each video frame (a = {at}Tt=1 with at ∈ [0, 1]). The
evaluation of the frames’ importance is performed by mod-
eling their temporal dependence. The Importance Estimator

extracts one feature vector per frame using the pool5 layer
of a model of GoogleNet [19] trained on ImageNet [15], and
passes the extracted feature vectors (X = {xt}Tt=1) to a bi-
directional LSTM that models the frames’ temporal depen-
dence and assigns a score to each frame that represents its
importance (i = {it}Tt=1 with it ∈ [0, 1]). The computed
scores about the frames’ aesthetic quality and importance are
then fused via their Hadamard product (denoted as ◦ in Fig.
1), resulting to a new sequence of scores (s = {st}Tt=1) that
is used by the Frame Picking mechanism.

To promote the selection of diverse frames, we introduce
a Categorical Distribution Sampler (CDS) that selects frames
sequentially by sampling from an appropriate distribution. At
the first step, this distribution is based on f1 = {ft}Tt=1 (com-
puted as f1 = N(s), where N() denotes min-max normaliza-
tion) and the sampling process results in the first picked frame
(p1) and a log probability of picking this sample from the dis-
tribution (lp1). At each subsequent step m (with m ∈ [2,M ]),
this distribution is based on fm = N(fm−1 ◦ (1−upm−1

)),
where upm−1

denotes the row of the frames’ (cosine) sim-
ilarity matrix that corresponds to the picked frame at step
m − 1 (see Fig. 2) and the Hadamard product within N()
effects a re-weighting, i.e., demotes the selection of frames
that are visually-similar to the already picked ones. After the
end of the M steps the Frame Picking mechanism defines a
set of picked frames [p1, ..., pM ] and a set of log probabili-
ties [lp1, ..., lpM ]; the latter are used to compute the expected
reward in the context of episodic reinforcement learning.

The output of the frame selection process for the eth

episode (see pe = {pe,k}Mk=1 in Fig. 1) is assessed by the
Thumbnail Evaluator, in terms of aesthetic quality, represen-
tativeness and diversity, using the reward functions in Eq. 1,
2 (proposed in [20]) and 3, respectively. The overall reward
for the current episode is then formed by the weighted sum
in Eq. 4 (denoted as ⊕ in Fig. 1), where D projects Rrepe

in the same scale with the other rewards. Finally, the aver-
age reward across all the N episodes is the feedback of the
Thumbnail Evaluator for the current training sample.
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Fig. 2. Processing steps of the proposed Frame Picking mechanism. Dashed lines indicate iterative processes during an episode.
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Re = α ·Raese + β ·D ·Rrepe
+ γ ·Rdive (4)

At inference time, only the Thumbnail Selector is used.
Given a video of T frames, it estimates the frames’ aesthetic
quality and visual importance, and passes the sequence of
fused scores s to the proposed Frame Picking mechanism.
The latter makes M picks through the sequential process de-
scribed above, leading to a sequence of frame-level scores
(s′ = {s′t}Tt=1), as depicted in Fig. 1. In this sequence, the
T −M zero values indicate non-selected frames of the video,
and the M non-zero values signify the suitability of each of
the M selected frames to be a video thumbnail, based on the
estimated aesthetic quality and importance of its visual con-
tent. Following, the k top-scoring frames (where k equals to
3 in our experiments) are selected as the video thumbnails.

Training strategy: For training RL-DiVTS we utilize the
episodic REINFORCE algorithm [21]. In each episode, the
Thumbnail Selector picks M frames following the process-
ing steps depicted in Fig. 2. Then, the Thumbnail Evaluator
computes the overall reward for the current episode, based
on Eq. 4. To compute the expected reward, we normalize
the sum of the log probabilites of the M sequential actions
made by the Frame Picking mechanism based on the number
of picks, and multiply the computed value with the overall re-
ward after subtracting from the reward a constant baseline b
which is computed as the moving average of the received re-
wards in the previous episodes (to avoid high variance in the
computed gradients [22]). The training loss is formed so as to
minimize the negative expected reward, and after the end of
all training episodes, the gradients are computed based on the
accumulated loss value. Based on this strategy the Thumbnail
Selector learns a policy for scoring the video frames, by max-
imizing the expected rewards from the Thumbnail Evaluator.

4. EXPERIMENTS

Datasets and evaluation protocol: We assessed the perfor-
mance of RL-DiVTS using the publicly-available datasets and
evaluation protocol of [7]. The OVP dataset is composed of
50 videos (up to 3.5 min. long) with diverse content (e.g.,
documentaries, lecture videos). The YouTube dataset con-
tains 50 videos (up to 9.5 min. long) of different types (e.g.,
news, TV-shows). Each video has been annotated by 5 users
in the form of key-frames. As in [7], for each video we con-
sidered the 3 most selected key-frames among all annotators
as its ground-truth thumbnails, and we estimated their similar-
ity with the automatically-selected ones using the Structural
Similarity Index (SSIM); we called it a match if SSIM score
> 0.7. For evaluation, we applied the “top-3 matching” ap-
proach of [7], that measures the overlap between the top-3
machine- and human-selected thumbnails per video. We ex-
pressed this overlap as a scalar ranging in [0, 1] and computed
the average score over all videos of the test set. As a note,
the adopted evaluation protocol is different and much more
challenging from the one in [9], which declares a hit (i.e.,
takes value “1”) if at least one of the top-3 machine-selected
thumbnails matches one (or more) of the top-3 ground-truth
ones, according to the same SSIM-related threshold.

Implementation details: All videos were downsampled
to 2 fps. The Importance Estimator contains a 2-layer bi-
directional LSTM with 512 hidden units, that is trained in
a full-batch mode using the Adam optimizer. The number of
selected frames M = 6 and the number of episodes N = 10.
Factor D is set equal to 5 · 103 and 2.5 · 103 for OVP and
YouTube respectively. In Eq. 4, α = 0.35, β = 0.35 and
γ = 0.3. Training runs for 150 epochs and we select the
model that maximizes the overall reward on the training set.
Following the paradigm of most SoA video summarization
works [23], we split the used dataset into a training (con-
taining 80% of data) and a testing (remaining 20% of data)
set. From YouTube, we exclude 10 cartoon videos, as the
used feature extraction (GoogleNet) and aesthetics estima-
tion (FCN) components cannot provide meaningful represen-
tations and measurements for cartoon videos. To reduce the
impact of the used data split and the network’s initialization,
we run our experiments using 5 different randomly-created
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OVP YouTube
Baseline (Random) 8.63 ± 2.50 4.41 ± 1.77
AC-SUM-GAN [24] 7.87 ± 3.41 7.33 ± 0.70
CA-SUM [25] 7.60 ± 2.85 8.00 ± 3.56
Hecate-VTS [4] 11.72 16.47
ReconstSum [7] 12.18 18.25
ARL-VTS [9] 12.50 ± 3.37 7.83 ± 1.49
RL-DiVTS (proposed) 25.33 ± 3.97 17.50 ± 2.57

Table 1. Performance comparison of RL-DiVTS with a
baseline (random-picking) approach, and a set of SoA video
thumbnail selection and summarization methods.

Training time (sec/epoch) # Param.
(in Millions)OVP YouTube

ARL-VTS [9] 38.41 62.43 28.36
RL-DiVTS 2.33 2.70 12.60

Table 2. Comparison of RL-DiVTS and ARL-VTS, in terms
of training time and amount of learnable parameters.

splits and 5 different random seeds, and we report the av-
erage performance and the standard deviation over these 25
runs. The experiments were carried out using an NVIDIA
RTX 2080 Ti. The PyTorch implementation of RL-DiVTS is
available at: https://github.com/e-apostolidis/RL-DiVTS.

Performance comparisons: We compared RL-DiVTS
against a baseline that selects video thumbnails randomly, and
a set of SoA video thumbnail selection and summarization
methods from the literature. Following [7], we considered
two video summarization methods ([24] and [25]) with public
implementations. The results of this comparison are shown in
Tab. 1. The scores for Hecate-VTS [4] and ReconstSum [7]
are the ones reported in [7], as their reproduction was not fea-
sible due to limited implementation details in [7]; e.g., there
are no details about the used training/testing samples. These
results show that RL-DiVTS performs consistently well on
both datasets, being by far the top-performing one on OVP
and the second best-performing one (slightly bellow the best
one) on YouTube. Moreover, it is more suitable for thumbnail
selection, compared to the examined summarization meth-
ods. Finally, compared to our previous ARL-VTS method [9],
RL-DiVTS brings a noticeable performance improvement on
both datasets. Moreover, it exhibits significant gains w.r.t.
training time and memory footprint. The results in Tab. 2
demonstrate that replacing the GAN-based Representative-
ness Evaluator of ARL-VTS by a reward function, reduced
the needed training time by more than 16 and 23 times for
the OVP and YouTube videos, respectively. Moreover, this
replacement removed the most computationally-demanding
module of ARL-VTS, as indicated by the significantly re-
duced number of learnable parameters of RL-DiVTS.

Ablation study: To assess the contribution of each of the
adopted video thumbnail evaluation criteria, we conducted an
ablation study including three variants of RL-DiVTS that do

OVP YouTube
RL-DiVTS w/o AES 14.13 ± 2.96 10.33 ± 1.73
RL-DiVTS w/o REP 20.53 ± 1.91 13.17 ± 1.09
RL-DiVTS w/o DIV 26.40 ± 1.30 14.33 ± 1.49
RL-DiVTS w/o CDS 24.67 ± 3.16 15.00 ± 1.44
RL-DiVTS (proposed) 25.33 ± 3.97 17.50 ± 2.57

Table 3. Ablation study w.r.t. the utilized rewards and the
diversity-aware CDS-based Frame Picking mechanism.

Frames OVP YouTube
3 20.80 ± 1.66 13.67 ± 1.73
6 25.33 ± 3.97 17.50 ± 2.57
9 19.33 ± 1.94 11.67 ± 3.12

Table 4. Performance of RL-DiVTS when varying the
amount of picked frames during training.

not take into account one of these criteria. In each case, the
overall reward is formed by averaging the two remaining re-
wards. To evaluate the impact of the proposed Frame Pick-
ing mechanism, we examined another variant of RL-DiVTS
(“RL-DiVTS w/o CDS”) that selects all M frames at once.
The results in Tab. 3 show that considering the aesthetic qual-
ity is of major importance when selecting video thumbnails,
as ignoring aesthetics leads to a big performance drop on both
datasets. The frames’ representativeness is also important, as
excluding this aspect leads to consistently lower performance.
In addition, taking into account the diversity of the selected
frames during training is beneficial for the method’s perfor-
mance on YouTube, while it leads to similar levels of perfor-
mance on OVP. Finally, incorporating knowledge about the
frames’ diversity during the frame-picking process positively
affects the method’s performance (especially on YouTube).
Overall, the results in Tab. 3 indicate that the removal of ei-
ther of the utilized criteria and the integrated Frame Picking
mechanism results in a noticeable performance degradation
in, at least, one of the used datasets. Finally, from Tab. 4 we
see that picking fewer or more than 6 frames during training
leads to reduced performance in both datasets.

5. CONCLUSIONS

In this work we proposed the RL-DiVTS method for video
thumbnail selection. A Thumbnail Selector estimates the
frames’ aesthetics and importance and integrates a diversity-
aware Frame Picking mechanism. Then, a Thumbnail Evalu-
ator assesses the aesthetic quality, representativeness and di-
versity of the selected frames using tailored reward functions.
The overall reward is used to learn how to select a diverse set
of aesthetically-pleasing and representative thumbnails based
on reinforcement learning. Comparisons with SoA video
thumbnail selection and summarization approaches showed
the competitive performance of RL-DiVTS on two datasets.
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