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ABSTRACT

In this paper we propose a no-reference image blur assessment

model that performs partial blur detection in the frequency domain.

Specifically, our method exploits the information derived from the

power spectrum of the Fourier transform. The latter is computed for

both the entire image and several patches of it, in order to estimate

the distribution of low and high frequencies, and is appropriately en-

coded so as to preserve some information about the spatial arrange-

ment of the frequency distribution in the image. Finally, a Support

Vector Machine (SVM) classifier is applied to the above features,

serving as the image blur quality evaluator. For a proper training and

evaluation of the proposed method, we proceeded with creating and

using a large image dataset consisting of more than 2400 digital pho-

tographs, which we make publicly available. The results show the

efficiency of our method in assessing not only artificially-distorted

images but also naturally-blurred ones.

Index Terms— No-Reference image blur assessment, blur de-

tection, Fourier transform, Support Vector Machine.

1. INTRODUCTION

Blur is one of the most commonly encountered image distortion

types in digital photos, since it can be caused during the captur-

ing of an image (e.g., out-of-focus, motion blur, etc.), as well as

during image manipulation procedures such as image compression.

Blur detection techniques aim to quantify the amount of blur in dig-

ital images and classify them as blurred or non-blurred according to

their visual quality. In this way, the distorted images can be detected

and removed or even possibly restored, leading to the enhancement

of multimedia preservation in terms of media quality and required

storage space. Therefore, the development of image blur assess-

ment techniques, particularly techniques that will effectively deal

with naturally-blurred images, is an appealing field of research.

The proposed method aims to achieve partial blur assessment

using the frequency power spectrum of both the entire image and

individual parts of it. The rest of this paper is organized as follows.

In section 2 we review the related work. In section 3 we present

the proposed approach in detail. In section 4 the datasets and the

experimental results are discussed and finally, conclusions are drawn

in section 5.

2. RELATED WORK

In recent years, a variety of image blur assessment methods have

been proposed in the relevant literature and many of them are based
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Fig. 1: Two image examples: (a) a well-focused (yet partially-

blurred) image, (b) a blurred (out-of-focus) image.

on edge detection. For instance, the authors of [1] propose a lo-

cal blur measure for the estimation of the presence of blur on each

pixel along the image’s edges. The method of [2] exploits the local

edges gradient to provide a sharpness metric. The average extent of

the edges is also used to quantify the blur degradation in [3], while in

[4] blur detection is based on the evaluation of the ratio and the mean

value of a quantity defined as “edge blurriness”. The blur metric pro-

posed in [5] is also based on edge detection, specifically on evaluat-

ing the average edge width. A more elaborate method is proposed in

[6], where the notion of Just Noticeable Blur (JNB) is introduced for

expressing the presence of blur around an edge. Based on the idea of

JNB, the authors of [7] compute the Cumulative Probability of Blur

Detection (CPBD) at the image edges to quantify the image sharp-

ness. Edge-based blur quantification methods are often susceptible

not only to the general problems of threshold selection at the edge

detection step, but also to the presence of noise, as discussed in [8].

To avoid performing edge detection, several other classes of blur

assessment methods have appeared in the literature. For instance,

in the method presented in [9] the presence of blur is estimated by

quantifying the difference between the variations of neighbouring

pixels before and after a low pass filtering step. In [10] and [11]

the image distortion quantification is achieved by employing Natural

Scene Statistics (NSS), in the spatial and in the frequency domain

respectively, as well as a supervised learning approach. The authors

of [12] also tried to assess image blurring using a combination of

NSS, multi-resolution decomposition methods and machine learning

techniques.

All the above techniques detect the presence of blur distortion

and assess the visual quality by looking at the overall image, with-

out taking into account that an image can be partially-blurred. A

partially-blurred image can still have high aesthetic quality, as can

be seen from the photo shown in Fig. 1(a). In [13], a partial blur

detection approach is proposed which exploits the information of

several image features, including saturation, contrast, gradient, end

others, extracted from image patches.

In the relevant literature, there are also many transform- and
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frequency-based methods. In [14], a no-reference sharpness measure

based on the local edge kurtosis of the DCT coefficients is proposed,

while in [15] a histogram-based measure exploits the distribution of

non-zero DCT coefficients to perform blur detection. The authors of

[16] assess the image sharpness as the Local Phase Coherence (LPC)

of the wavelet image coefficients. In [17], a blur detection approach

is proposed which exploits the Haar wavelet transform and sets a

threshold value to quantify the edge sharpness level.

Methods based on the Fourier transform include [18]-[24]. In

[18] and [19] the authors estimate the sum of the power spectra co-

efficients to characterize the image sharpness, while in [20] the am-

plitude spectrum slope is employed. Moreover, in [21], the authors

propose an SVM-based learning system in order to predict the pa-

rameters that determine the motion and the out-of-focus blur. In

[22], sharpness evaluation is performed by exploiting both spec-

tral and spatial image information. The method proposed in [23]

takes advantage of frequency domain analysis using image patch

information for training an SVM classifier to track motion-blurred

targets in a video. In [24], a review on motion blur detection is

presented where several frequency-based techniques are discussed.

Although the above methods are related to the present study, our

method demonstrates a new, simple yet effective technique to per-

form frequency domain analysis and encode its results for blur detec-

tion in still images, which to our knowledge has not appeared in the

relevant literature. Furthermore, the above frequency-based still im-

age assessment methods do not take into account information about

the spatial arrangement of the Fourier transform outputs; spatial in-

formation has however been shown to provide significant advantages

in other image analysis tasks, such as visual concept detection, e.g.

spatial pyramids proposed in [25].

Specifically, the present work attempts to quantify the impact of

blurring on the perceived image quality and aesthetics by examining

not only the entire image, but also individual parts of it. For this, we

propose a frequency domain scheme which exploits the information

of the frequency spectrum and appropriately represents it with some

form of spatial pyramids so as to also preserve spatial information

about the frequency distribution. We then use this in combination

with a supervised learning model to estimate the blur degradation

and determine whether a given image is blurred or not without intro-

ducing the need for heuristically selecting any threshold values.

3. PROPOSED BLUR DETECTION SCHEME

3.1. Basic principle

During the process of image capture, the image may undergo several

degradations. One of them is blurring, which occurs when a low-

pass filter is applied on the image. In the real world, blurring may be

caused by the opening and closing speed of the shutter, atmospheric

turbulence, out-of-focus of the lens, or relative motion between the

camera, a moving object and the background. In most of the above

cases, the result is the attenuation of high frequencies, which affects

the frequency spectrum of the image. The proposed blur detection

approach exploits this fundamental principle and attempts to analyse

the image in the frequency domain using the Fourier transform.

The process of blurring can be described by the following con-

volution equation,

g(x, y) = i(x, y) ∗ h(x, y) + n(x, y) (1)

where, i(x, y) is the original image, h(x, y) is the blurring Point-

Spread Function (PSF), n(x, y) is additive noise and g(x, y) is the

(a) (b) (c)

Fig. 2: Power spectrum examples: (a) undistorted image, (b)

artificially-blurred image, (c) naturally-blurred image. Higher den-

sity regions indicate the low power of high frequencies.

degraded image. The Fourier transform of the degraded image can

be represented by the following model,

G(u, v) = I(u, v) ·H(u, v) +N(u, v) (2)

where G(u, v), I(u, v), H(u, v) and N(u, v) are the Fourier trans-

form of g(x, y), i(x, y), h(x, y) and n(x, y), respectively. In the

proposed method, we exploit the information derived from the power

spectrum of the Fourier transform, which is estimated by the follow-

ing equation,

Power = 10 · (|G|2 + 1) (3)

As shown in Fig. 2, the power spectra of an undistorted, an

artificially-blurred and a naturally-blurred image have significant

differences. Therefore, the main goal is to effectively capture the

proper information of the power spectrum in order to classify an im-

age as blurred or not. Below, we present a new, efficient technique

to identify the high-frequencies distribution of the image power

spectrum.

3.2. Partial blur image assessment, an aesthetic approach

Photographs that have one specific, well-focused point of interest are

usually more appealing to the viewers. Professional photographers

often focus on the subject of interest, intentionally leaving the back-

ground out of focus. Consequently, there are high quality photos

that are well-focused on a particular subject while exhibiting par-

tial out-of-focus blur, as shown in Fig. 1(a). This kind of images

may mislead the majority of blur detection methods that examine

the presence of blur on the image as a whole.

To prevent such quality assessment errors, we adopt a partial

blur detection scheme. This involves exploiting spatial pyramids,

and in particular partitioning the original image into 9 equal blocks

according to the rule of thirds [26] and taking into account the power

spectra of both the entire image and each of the 9 aforementioned

patches for assessing the presence of blur. Thus, even in the case

of partially-blurred images we can correctly identify them as such.

We chose the aforementioned 9 patches based on preliminary ex-

periments which demonstrated that smaller patches are not able to

properly describe the blur degradation, while larger patches fail to

sufficiently capture the partial blur.

Specifically, our method takes an image as an input, which is

then partitioned into 9 patches. Subsequently, the power spectrum

is computed accordingly to Eq. (3), not only for the entire image,

but also for each of its 9 patches separately. Therefore, 10 different

power spectra are estimated for the input image. Then, the challenge

is to quantify the contained high frequencies. We refrain from setting

a threshold value that would be applied to the outcome of Eq. (3) at

this point, since this would be an ad-hoc solution making our sys-

tem sensitive to input data variability. Instead, we estimate a 5-bin
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Fig. 3: Overview of our partial blur detection method

frequency histogram for each of the power spectra, by subdividing

the frequency amplitude according to the following ranges: [0, 100],
[100, 150], [150, 200], [200, 300] and [300, max]. These ranges were

experimentally found to be suitable for our application. In addition,

for greater spatial accuracy, we further divide each of the ten power

spectra into 9 equal patches (Fig. 3) and compute such histograms

for each spectrum patch. Finally, all calculated 5-bin histograms are

concatenated in a 500-element vector, which following normaliza-

tion of its elements in the range [0, 1] serves as the input to an SVM

classifier [27]. After applying the trained SVM classifier to an input

image, a confidence value is obtained, indicating the probability that

this image is blurred. The overall procedure of the proposed blur

detection method is presented in Fig. 3 and in Algorithm 1.

Algorithm 1 Partial Blur Detection

Input: An image I.

Output: A blur confidence value.

1: Convert the RGB image I(x,y,3) into gray level image I1(x,y).

2: Partition I1(x,y) into equal 9 parts, Ip(x,y), where p = 2, ..., 10.

3: Compute the Fourier transform Ip(u,v) according to Eq. (2),

where p = 1, 2, ..., 10.

4: Compute the power spectrum PSp(u,v) according to Eq. (3),

where p = 1, 2, ..., 10.

5: for p = 1 : 10 do

6: Estimate the 5-bin frequency histogram of the PSp(u, v)
7: Partition the PSp(u, v) into equal 9 patches, PSpatchpi

8: for i = 1 : 9 do

9: Estimate the 5-bin frequency histogram of the PSpatchpi

10: end for

11: end for

12: Evaluation of the 1x500 input vector by the trained SVM classi-

fier.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Datasets and Evaluation

Most image blur assessment approaches have been tested on pub-

licly available image datasets, e.g. [28] and [29], which provide

the reference (undistorted) images together with artificially-blurred

variations of them. In the present work, we aim to perform blur de-

tection not only on artificially-distorted images, which are globally

blurred with low-pass filters, but also on real photos, where any blur

distortion has been caused by external conditions and detecting it

is much more challenging. For this reason, we created a large im-

age dataset consisting of 2450 digital images with the corresponding

ground-truth which indicates whether each image is blurred or not.

The ground-truth was generated by human inspection of the images.

In our dataset, 1850 of the images are photos captured by various

camera models in different shooting conditions that have not been al-

tered in any way following their capture, while the remaining 600 are

artificially-blurred images. Out of the 1850 non-altered photos, 1219

are clear, undistorted images (70 of them exhibit intentional partial

blur), while the remaining 631 are blurred images, exhibiting mostly

out-of-focus and motion blur. For the creation of the 600 artificially-

distorted images, 60 of the aforementioned undistorted images were

randomly chosen and then several types of Gaussian, motion and

circular averaging filters were applied to them in order to simulate

different levels of degradation, similarly to [9] (see1 for details on the

applied filters). The resolution of the images in our dataset ranges

from 960x1280 to 4000x2248 pixels. The image dataset and the

ground-truth image quality assessments that are introduced in this

section have been made publicly available1.

As mentioned above, our method uses an SVM classifier to as-

sess whether an image is degraded by blur or not. For training this

SVM classifier, we used 630 undistorted (28 of them are partially-

blurred), 220 naturally-blurred and 150 artificially-distorted images

chosen from the aforementioned CERTH image blur dataset and 40

of the undistorted images, resized to 384x512 and 512x512 pixels.

The selection of the C and the γ parameters of the SVM was per-

formed using a ten-fold cross validation on this training set. Sub-

sequently, the remaining 1450 images of the CERTH image blur

dataset were used for evaluation, divided into two sets: the “Natural

Blur” testset, which contains 411 naturally-blurred and 589 undis-

torted images, and the “Artificial Blur” testset, which contains 450

artificially-blurred and 30 undistorted images derived from the “Nat-

ural Blur” testset. In both cases, besides the training and the evalu-

ation sets being disjoint, we made sure that the majority of images

used for the evaluation were taken by different cameras than those

used for the training.

Finally, the performance of our blur detection approach is evalu-

ated calculating the overall Accuracy, Precision, Recall and F-score

values,

Accuracy =
TP + TN

#I
Precision =

TP

TP + FP

Recall =
TP

#B

where, TP (True Positives) is the number of blurred images cor-

rectly identified as blurred, FP (False Positives) is the number of

undistorted images incorrectly identified as blurred, TN (True Neg-

atives) is the number of undistorted images correctly identified as

undistorted, #I is the total number of images and #B is the total

number of blurred images in the testset. F-score is also calculated as

the harmonic mean of Precision and Recall.

4.2. Results and Discussion

We use both the “Natural Blur” and the “Artificial Blur” evaluation

set in order to test our method’s performance and compare with

previously proposed methods for which the corresponding code

has been released. Specifically, we compare with the Blind Image

Quality Index (BIQI) [11] and the Blind / Referenceless Image

Spatial Quality Evaluator (BRISQUE) [10], which, similarly to

1The CERTH image blur dataset, http://mklab.iti.gr/project/imageblur
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Table 1: Experimental results on CERTH testsets

“Natural Blur” testset
Metrics Proposed CDLN BIQI BIQI BRISQUE JNB CPBD LPC S3 MDWE

method [9] [11] blur [11] [10] [6] [7] [16] [22] [5]
FP 62 366 298 145 280 164 243 134 114 133
FN 66 134 149 108 91 160 208 114 107 147
Accuracy 0.8720 0.5000 0.5530 0.7470 0.6290 0.6760 0.5490 0.7520 0.7790 0.7200
Precision 0.8394 0.4308 0.4679 0.6763 0.5333 0.6048 0.4552 0.6891 0.7273 0.6650
Recall 0.8394 0.6740 0.6375 0.7372 0.7786 0.6107 0.4939 0.7226 0.7397 0.6422
F-score 0.8394 0.5256 0.5396 0.7055 0.6330 0.6077 0.4737 0.7055 0.7334 0.6535
Run Time 23min 35min 25min 25min 35min 294min 270min 294min ∼38h 38min

“Digital Blur” testset
Metrics Proposed CDLN BIQI BIQI BRISQUE JNB CPBD LPC S3 MDWE

method [9] [11] blur [11] [10] [6] [7] [16] [22] [5]
FP 0 15 23 9 11 10 8 6 5 8
FN 4 7 5 16 2 74 40 18 2 13
Accuracy 0.9917 0.9542 0.9417 0.9479 0.9729 0.8250 0.9000 0.9500 0.9854 0.9563
Precision 1 0.9672 0.9509 0.9797 0.9760 0.9741 0.9809 0.9886 0.9890 0.9820
Recall 0.9911 0.9844 0.9889 0.9644 0.9956 0.8356 0.9111 0.9600 0.9956 0.9711
F-score 0.9955 0.9758 0.9695 0.9720 0.9857 0.8995 0.9447 0.9741 0.9922 0.9765
Run Time 8min 12min 9.5min 9.5min 11min 109min 80.5min 114min ∼20h 45min

our approach, are learning based methods, and the following non-

learning-based methods: the blur metric from Crete et al. (CDLN)

[9], the JNB algorithm [6], the CPBD algorithm [7], the LPC-based

algorithm [16], the spatial and spectral algorithm S3 [22] and the

perceptual blur metric from Marziliano et al. (MDWE) [5]. The

first two methods are used for image quality assessment in general,

but also examine the blur distortion. In addition, BIQI provides a

specific model for blur detection (BIQI blur), which we also exam-

ine separately. For all these methods we used the parameter values

specified by the authors in the corresponding papers. It should be

noted that all the above methods produce a score in a pre-specified

range (e.g. [0, 1]) to indicate the level of blur that is detected, rather

than making a binary decision. In order to calculate the evaluation

measures of section 4.1, we transformed the scores into binary blur

/ non-blur decisions by searching the most appropriate threshold

value for each method separately, for the given image collections.

The results of the performance evaluation and comparisons are

shown in Table 1. As can be seen, all examined methods achieve

high performance for artificially-distorted images, but the results

on naturally-blurred images do not always remain similarly high.

On the challenging and realistic problem of detecting natural blur,

the proposed method achieves the best results, followed by the S3

algorithm and the LPC-based method. In comparison to the latter,

the proposed method exhibits a relative improvement of 12%-22%

in terms of Accuracy, Precision, Recall and F-score.

The BIQI and BRISQUE methods were originally trained on a

small dataset [28] , which consisted of approximately 200 artificially

degraded images for the blur distortion. In order to assess the im-

pact of their training on the results, we re-trained them using the

Table 2: Experimental results on TID and BID dataset

Metrics Accuracy F-score
TID BID TID BID

Proposed method 0.96 0.81 0.98 0.80
CDLN [9] 0.84 0.54 0.91 0.57
BIQI blur [11] 0.93 0.75 0.96 0.73
BRISQUE [10] 0.91 0.69 0.94 0.66
JNB [6] 0.92 0.61 0.96 0.49
CPBD [7] 0.80 0.58 0.86 0.56
LPC [16] 0.95 0.70 0.96 0.67
S3 [22] 0.96 0.76 0.97 0.71
MDWE [5] 0.89 0.72 0.93 0.71

same CERTH training dataset that we used for the training of the

proposed approach, again computing the proper C, γ and ǫ using

ten-fold cross validation. After the re-training, the BIQI achieves

Accuracy = 0.78 and F-score = 0.74, while BRISQUE achieves Ac-

curacy = 0.78 and F-score = 0.75 on the “Natural Blur” testset. From

these results it is evident that the proposed approach still signifi-

cantly outperforms the BIQI and BRISQUE methods in detecting

naturally-blurred images, even after their more extensive training.

Having presented the experimental results of our blur detection

method on the CERTH image dataset, we now test it on the TID

artificially-blurred dataset [29], and on the BID naturally-blurred

dataset [30], to further demonstrate its good performance. The

results are shown in Table 2, where we can see that our method

achieves high performance on these datasets, which is also con-

sistently higher than the performance of the other methods that we

compare with (again, after the re-training of the BIQI and BRISQUE

algorithms using our extensive training set).

In addition, it is worth noting that our blur detection method cor-

rectly classified 75 out of the 90 partially-blurred images that exist

in the BID dataset and 36 out of the 42 partially-blurred images that

exist in the “Natural Blur” testset of the CERTH image blur dataset.

At this point, we should mention that our experiments aimed to

evaluate not only the Accuracy of these methods but also their ex-

ecution time, as this plays a crucial role in real-time applications.

All the experiments were performed on an Intel Core i7 PC (3.50

GHz, 16 GB RAM, Windows 7 64-bit). The corresponding results

are summarized in Table 1, where we can see that our approach has

low computational complexity as it needs 23 minutes for process-

ing a collection of 1000 images of size ranging from 960x1280 to

4000x2248 pixels (i.e. approximately 1.4 sec. per image). This is

similar to or less than the processing time of the other methods of

Table 1.

5. CONCLUSION

In this paper, we proposed a new image partial blur assessment ap-

proach, working on the frequency domain, which analyses the high-

and low-frequency distribution of the power spectra and uses a su-

pervised machine learning method. This approach results in a no-

reference blur detection model which, as shown by the experimental

results, presents promising performance in real-time blur assessment

for both artificially- and naturally-blurred images.
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