ENHANCING VIDEO CONCEPT DETECTION WITH THE USE OF TOMOGRAPHS

Panagiotis Sidiropoulos, Vasileios Mezaris, Ioannis Kompatsiaris

Information Technologies Institute / Centre for Research and Technology Hellas
6th Km Charilaou-Thermi Road, P.O.Box 60361, Thermi 57001, Greece

ABSTRACT

In this work we deal with the problem of video concept detection, for the purpose of using the detection results towards more effective concept-based video retrieval. In order to handle this task, we propose using spatio-temporal video slices, called video tomographs, in the same way that visual keyframes are typically used in traditional keyframe-based video concept detection schemes. Video tomographs capture in a compact way motion patterns that are present in the video, and are used in this work for training a number of base detectors. The latter augment the set of keyframe-based base detectors that can be trained on different image representations. Combining the keyframe-based and tomograph-based detectors, improved concept detection accuracy can be achieved. The proposed approach is evaluated on a dataset that is extensive both in terms of video duration and concept variation. The experimental results manifest the merit of the proposed approach.

Index Terms— video analysis, supervised learning, support vector machines, video tomograph, concept detection

1. INTRODUCTION

One of the main goals of the image and video processing community is to develop techniques that would allow the automatic understanding of unconstrained video. In the root of this task lies the fast and accurate detection of the semantic concepts depicted in the video. The efficient and effective detection of concepts by looking purely at the visual content is an important and challenging problem.

In the last years, the research community, partially triggered by the TRECVID Semantic Indexing task [1], has been shifting its focus on large-scale video concept detection, i.e. the development of systems that would be able to handle large amounts of video data and detect multiple semantic concepts efficiently (e.g. [2], [3]). As a result, several powerful techniques have emerged, which aim to combine high precision and low computational cost. For example, in order to exploit color information in addition to local image structure, the Opponent-SIFT and RGB-SIFT (or Color-SIFT) variations of the well-known SIFT descriptor [4] were proposed in [5]. Furthermore, in order to reduce computational cost, Speeded Up Robust Features (SURF) [6] and DAISY [7] were introduced as fast SIFT approximations; interest point detection (traditionally performed with the help of corner detectors, e.g. the Harris-Laplace one [8]) was fully or partially replaced in many schemes by dense sampling (i.e. the sampling of image patches on a regular dense grid); and chi-square kernels, that were originally considered to be optimal for use in support vector machines (SVM) [9], [10] are now often replaced by Histogram Intersection kernels [11] or even Linear SVMs, to name a few recent developments in this area.

Contrary to what is intuitively expected, in most of the developed schemes that aim to detect multiple concepts in video data, motion information is ignored and the detection is based exclusively on a set of characteristic keyframes that are extracted at shot level (i.e. each video shot is represented by one or more keyframes). This is explained by the fact that motion descriptor extraction is typically associated with high computation cost, and the gains in precision that are attained by introducing motion descriptors in the concept detection process are often disproportionally low, compared to the added computational complexity. However, a concept detection algorithm that uses no motion information handles the video stream as a mere collection of photos (keyframes), failing to take advantage of the dynamic nature of video that makes it particularly expressive.

In this work we propose the use of video tomographs [12] (i.e. spatio-temporal slices with one axis in time and one in space) to represent video motion patterns. These tomographs are straightforwardly extracted, their extraction exhibits extremely low computation cost, and as we show in this work they can then be analyzed as if they were regular keyframes. We demonstrate that video tomographs, when used along with visual keyframes, enhance video concept detection while being a computationally efficient solution towards exploiting information about the temporal evolution of the video signal.

The rest of the paper is organized as follows. An overview of the proposed approach is presented in Section 2. The use of visual tomographs for concept detection is detailed in Section 3. The experimental results are reported in Section 4 and, finally, conclusions are drawn in Section 5.

2. OVERVIEW OF THE PROPOSED APPROACH

The pipeline of a typical concept detection system is shown in Fig. 1. The video stream is initially sampled, for instance by selecting one or multiple keyframes per shot. Subsequently, each sample is represented using one or more types of appropriate features (e.g. SIFT [4], SURF [6]). These features form the input to a number of base classifiers, which typically rely on vector quantization and support vector machines. The parameter sets that control the employed classifiers are predefined (i.e. have been learned at the classifier training stage), using similar features extracted from training data. Finally, the base classifier outputs are fused to estimate a final concept detection score. It should be noted that if multiple concepts are to be detected, this process is executed multiple times, independently for each of the considered concepts.

In this work we focus on the first component of the analysis pipeline, i.e. the video sampling, to extract not only keyframes but also video tomographs. We then show that all other components of the analysis pipeline that processes the extracted video samples (both keyframes and tomographs) can follow established state-of-the-art approaches. More specifically, in our work the employed rep-
representations are SIFT, RGB-SIFT and Opponent-SIFT, which were experimentally found in [5] to form the optimal low-level visual descriptor set for video concept detection tasks. These descriptors are extracted from local image patches. Similarly to the current state of the art, we use two approaches for selecting these patches. In the first one the interest points are selected through dense sampling, while in the second one interest point detection is performed through a Harris-Laplace corner detector [8]. The extracted low-level descriptors are assigned to visual words using separately two vocabularies, which were created off-line by k-means clustering, through hard-assignment and soft-assignment, respectively [13].

A pyramidal 3 × 1 decomposition scheme, employing 3 equally-sized horizontal bands of the image [14], is used in all cases, thus generating 3 different Bag-of-Words (BoW) feature vectors from image bands, while a fourth BoW is built using the entire image. In all cases, the number of words for each BoW was set to 1000. Thus, for each combination of video sampling strategy, interest point detector, descriptor and assignment method a vector of 4000 dimensions is finally extracted and used as the actual input to the utilized base classifiers. All classifiers were trained off-line, using the extensive training data that were made available as part of the TRECVID 2012 Semantic Indexing task [15].

3. VIDEO TOMOGRAPHS FOR CONCEPT DETECTION

In this section we explain how keyframe-based concept detection can be improved by augmenting the set of keyframes with a spatio-temporal type of image, the video tomograph. Video tomographs were introduced in [12] as a cross-section image (i.e. an image defined by the intersection between a plane and the video volume) which is additionally smoothed using a high-pass filter. The cross-section image is generated by fixing a 1-D line on the image plane and aggregating the video content falling on the corresponding line for all frames of the shot. In this work video tomographs are re-defined in a slightly different and somewhat more general way, and are used in a completely new way for a different application.

Video tomograph re-definition is based on the fact that the video volume is not continuous, but is formed by a finite set of frames. Consequently, tomographs can be defined as a set of line segments, which are recursively estimated as intersections between lines and frames. More specifically, if \(f_i \) is the current frame, \(v_{i-1} \) the line defining the intersection in the previous frame, \(R_i, T_i \) the current tomograph rotation matrix and \(T_i \) the current tomograph translation vector then the \(i-th \) line is estimated as:

\[
v_i = f_i \cap (R_i * v_{i-1} + T_i)
\]

If \(v_0 \) is the initial line segment and all \(R_i, T_i \) are known, then a tomograph image can be straightforwardly extracted. It should be noted that this tomograph definition encompasses the definition of [12]. As a matter of fact, this corresponds to the selection \(R_i = I_2, T_i = [0 \ 0]^T \forall i \), where \(I_2 \) is the two-dimensional identity matrix and the superscript \(T \) denotes the transpose matrix.

Based on the above definition, complex motion patterns can be projected into meaningful images. For example, a tomograph could be formed by lines chosen so as to be always perpendicular to the camera motion direction, thus generating an image that captures the objects being followed by the camera. While such an approach would require the characterization of camera motion, several methods exist for automatically detecting camera motion parameters from the video (e.g. [20], [21]), and such methods have also been used directly on the motion vectors encoded in the MPEG stream (e.g. [22]), thus introducing minimal computational overhead to the overall video analysis pipeline.

Putting aside for now the possibility of taking into account camera motion, the two most simple tomograph images are the centralized horizontal (CH-tomograph) and the centralized vertical (CV-tomograph) tomographs. A CH-tomograph is constructed by aggregating for all frames of a shot the visual content of the horizontal line passing from the frame center (i.e. \(R_i = I_2, T_i = [0 \ 0]^T \forall \) and \(v_0 \) is the line \(y = H/2 \), where \(H \) is the frame height). A CV-tomograph is constructed in an analogous way, with the only difference being that \(v_0 \) is perpendicular to the x-axis, instead of parallel to it.

\[
\begin{aligned}
 &\mbox{Parameter Set 1} \\
 &\mbox{Classifier 1} \\
 &\mbox{Score} \\
 &\mbox{Final Concept Detection Score}
\end{aligned}
\]
Fig. 2. Two tomograph examples, each one corresponding to a different type of tomograph image. The left tomograph is a CH-tomograph, while the right a CV-tomograph. Both of them are defined by the temporal ordering of lines that pass from the center of the frame. Three indicative frames of the shot from which each tomograph was generated are also shown to the left of the corresponding tomograph (the temporal order of the shown frames is from the top to the bottom).

In Fig. 2 a CH-tomograph and a CV-tomograph example are shown. In the left example the shot shows the national anthem ceremony in a sports event. As the camera follows the raising flag, the CH-tomograph “draws” a flipped version of the scene background. The flipping artifact is not expected to play an important role in the following steps of the concept detection algorithm, since most of the well-known low-level descriptors are orientation invariant. On the other hand, in the right example the video shot depicts a road junction. In this case, the camera is moving in the horizontal direction. The CV-tomograph, which is generated by lines perpendicular to the camera motion direction, generates a “mosaic-like” image of the urban scene.

For the purpose of concept detection, the tomographs are processed in the same way as keyframes. More specifically, image patches are estimated, followed by descriptor extraction and vector quantization. It should be noted that the vocabulary employed at this stage is constructed by clustering visual words extracted from the corresponding tomograph type (e.g. a random sample of CV-tomograph SIFT vectors are clustered in order to generate the vocabulary used for vector quantization of SIFT descriptors extracted from CV-tomograph images). The resulting Bag-of-Words feature vectors are the input to tomograph-based base classifiers. These classifiers are also independently trained for each tomograph type, using annotated samples taken from tomographs of the corresponding type. Finally, the base classifier output is fused with the output of the keyframe-based classifiers in a simple averaging scheme that does not discriminate between outputs of keyframe and tomograph-based classifiers.

Concerning the computational cost of introducing video tomographs in the concept detection process, it is straightforward that this processing time depends on the total number of pixels in each tomograph. Consequently, an estimation of the tomograph size can be used to compare the computational cost of tomograph-based classification with the computational cost of keyframe-based classification. Keyframe size is constant for a given video and can be adjusted during the decoding process. On the other hand, tomograph size is not constant, since it depends not only on frame size and frame ratio (that are typically constant) but also on the current shot duration. However, a rough estimation of the mean tomograph size is possible, at least for CH-tomographs and CV-tomographs. As a matter of fact, if W and H is the frame width and height, r is the frame rate and τ, the duration of shot s then the total number of pixels for keyframe K, CH-tomograph K_H and CV-tomograph K_V would be:

$$\#(K) = WH$$

Concerning the descriptor extraction computational cost when using a pair of tomographs is similar to the cost of processing a single keyframe. This cost is minimal compared to typical motion descriptors, since the extraction of the latter involves processing all frames of each shot or a large subset of them. Due to this, the extraction of even computationally efficient spatio-temporal descriptors (e.g. [23], [24]) is much more computationally demanding.

Finally, it should be noted that the creation of tomographs is also very fast. Apart from decoding the video stream into frames, this requires only accessing a small set of image pixels. This set is determined for each frame by Eq. (1) in $O(\max\{W, H\})$ cost.

$$\#(K_H) = \lceil r\tau_s \rceil W, \quad \#(K_V) = \lceil r\tau_s \rceil H$$

where $\#(.)$ operator denotes the number of frames and $\lfloor . \rfloor$ the integer part of a real number. In the extensive TRECVID SIN 2012 dataset, the mean shot duration is 5.1 seconds. If typical values ($r = 25$, $\tau_s = 5.1$, $W = 352$, $H = 288$) are replaced in the above equations then the number of pixels of both CH-tomographs and CV-tomographs compared to the number of pixels in a keyframe would be:

$$\frac{\#(K_V) + \#(K_H)}{\#(K)} \simeq 0.8$$

Consequently, the descriptor extraction computational cost of introducing video tomographs in the concept detection scheme that employs only 1 keyframe per shot and a concept detection scheme that additionally employs 1 CH-tomograph and 1 CV-tomograph per shot. We selected these two simple tomographs for our experiments in order to demonstrate that tomographs can enhance performance even if a non-optimized, simple tomograph extraction method is followed. Additionally, a third configuration in which only the aforementioned tomographs are used was also included in the comparison. In all cases, the scores of the different base classifiers (regardless of whether these are keyframe-based classifiers, tomograph-based ones, or a mixture of both types) were fused at the last stage of the concept detection process simply by calculating their harmonic mean.

The experimental setup employs the entire video dataset and concept set that were used in the 2012 TRECVID SIN task. More specifically, 46 semantic concepts were evaluated. The detection of these concepts takes place in a video dataset comprising 8263
Finally, it should be noted that the concepts that benefit the most from the introduction of tomographs are, as expected, the dynamic concepts, i.e., those that are clearly related with motion. In the employed concept set we have identified 15 concepts that are either directly related with actions that involve motion (e.g. “throwing”, “walking-running”, “bicycling”) or are objects that are very likely to be filmed while they are in motion (e.g. “skier”, “motorcycle”, “boat-ship”). In Fig. 3 these concepts are marked with a “*”. If only these concepts are taken into account, the accuracy boost caused by introducing tomographs is 56.4% (mean xinfAP rising from 0.074 to 0.116). For the remaining, rather static concepts, the corresponding mean xinfAP boost is limited to 11%. Among the latter concepts, there are 7 for which the introduction of tomographs results in detection accuracy reduction (i.e. “landscape”, “stadium”, “apartments”, “clearing”, “fields”, “lakes”, “man wearing a suit”). The reason for this is that shots associated with such concepts typically do not exhibit specific motion patterns that could contribute to the detection of the concept. Consequently, for these concepts the tomograph-based classifiers primarily introduce noise to the overall detection pipeline.

5. CONCLUSIONS

In this work we examined the use of video tomographs as an additional sampling strategy for the video concept detection task. Our experimental results give evidence that the use of video tomographs can be an efficient and effective way to include motion-related information in concept detection systems, while it is expected that introducing more sophisticated tomograph selection techniques in the future could further increase the achieved accuracy.

6. REFERENCES

