Ινστιτούτο Τεχνολογιών Πληροφορικής και Επικοινωνιών

el en

Δημοσιεύσεις Ι.Π.ΤΗΛ.

Linear subclass support vector machines

In this letter, linear subclass support vector machines (LSSVMs) are proposed that can efficiently learn a piecewise linear decision function for binary classification problems. This is achieved using a nongaussianity criterion to derive the subclass structure of the data, and a new formulation of the optimization problem that exploits the subclass information. LSSVMs provide low computation cost during training and evaluation, and offer competitive recognition performance in comparison to other popular SVM-based algorithms. Experimental results on various datasets confirm the advantages of LSSVMs.

Συνημμένα

Ινστιτούτο Τεχνολογιών Πληροφορικής και Επικοινωνιών

Τ.Θ.60361, 6ο χλμ Χαριλάου - Θέρμης, 57001, Θεσσαλονίκη
τηλ. 2311 257701-3 / fax. 2310 474128
email: