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Highlights 

• AVS’s task objective is to retrieve a list of the 1000 most 
related test shots for a specific text query 

• Our approach: a fully-automatic system 

• The system consists of three components 
– Video shot processing 

– Query processing 

– Video shot retrieval 

• Both fully-automatic and manually-assisted (with users just 
specifying additional cues) runs were submitted 
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System Overview 
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Video shot processing 
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Video shot processing 

ImageNet 1000 

• Five pre-trained DCCNs for 1000 concepts 
– AlexNet 

– GoogLeNet 

– ResNet  

– VGG Net  

– GoogLeNet trained on 5055 ImageNet concepts (we only considered the 
subset of 1000 concepts out of the 5055 ones) 

• Late fusion (averaging) on the direct output of the networks 
to obtain a single score per concept 
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Video shot processing 

TRECVID SIN 345  
• Three pre-trained ImageNet networks, fine-tuned (FT; three FT strategies 

with different parameter instantiations from [1]; in total 51 FT networks) 
for these concepts 

– AlexNet (1000 ImageNet concepts) 

– GoogLeNet (1000 ImageNet concepts) 

– GoogLeNet originally trained on 5055 ImageNet concepts 

• The best performing FT network (as evaluated on the TRECVID SIN 2013 
test dataset) is selected 

• Examined two approaches for using this for shot annotation  

– Using the direct output of the FT network 

– Linear SVM training with DCNN-based features 

[1] N. Pittaras, F. Markatopoulou, V. Mezaris, I. Patras, "Comparison of Fine-tuning and Extension Strategies for Deep Convolutional Neural 
Networks", at the 23rd Int. Conf. on MultiMedia Modeling (MMM'17), Reykjavik, Iceland, 4 January 2017. (accepted for publication) 
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Query processing 

• Each query is represented as a vector of related concepts 
– We select concepts which are most closely related to the query  

– These concepts form the query’s concept vector 

– Each element of this vector indicates the degree that the corresponding 
concept is related to the query 

• A five-step procedure is used 
– Each step selects concepts, from the concept pool, related to the query  
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Query processing: Step 1 

Motivation: Some concepts are semantically close to 
input query and they can describe it extremely well 

Approach: 
– Compare every concept in our pool with the entire input query, 

using the Explicit Semantic Analysis (ESA) measure  

– If the score between the query and a concept is higher than a 
threshold (0.8) then the concept is selected 

– If at least one concept is selected in this way, we assume that 
the query is very well described and the query processing stops; 
otherwise the query processing continues in step 2 

Example: the query Find shots of a sewing machine 
and the concept sewing machine are semantically 
extremely close 

 

Step 1  

Step 2 
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Query processing: Step 1 

The processing stopped in step 1 for 3 out of the 30 
queries: 

• For Find shots of a sewing machine the concept 
sewing machine was selected 

• For Find shots of a policeman where a police car is 
visible the concept police car was selected 

• For Find shots of people shopping the concept 
tobacco shop was selected 

Step 1  

Step 2 
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Query processing: Step 2 

Motivation: Some (complex) concepts may describe 
the query quite well, but appear in a way that 
subsequent linguistic analysis to break down the 
query to sub-queries can make their detection difficult 

Approach: 
– We search if any of the concepts appear in any part of the 

query, by string matching 

– Any concepts that appear in the query are selected and the 
query processing continues in step 3 

Example: For the query Find shots of a man with 
beard and wearing white robe speaking and 
gesturing to camera the concept speaking to camera 
was found 

Step 1  

Step 2 

Step 3 
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Query processing: Step 2 

For 5 out of 30 queries concepts were selected 
through string matching 

• For Find shots of a man with beard and wearing white robe 
speaking and gesturing to camera, the concept speaking to 
camera was selected 

• For Find shots of one or more people opening a door and exiting 
through it, the concept door opening was selected 

• For Find shots of the 43rd president George W. Bush sitting down 
talking with people indoors, the concept sitting down was selected 

• For Find shots of military personnel interacting with protesters, the 
concept military personnel was selected 

• For Find shots of a person sitting down with a laptop visible, the 
concept sitting down was selected 

 

 

 

 

 

Step 1  

Step 2 

Step 3 
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Query processing: Step 3 

Step 1  

Step 2 

Step 3 

Motivation: Queries are complex sentences; we 
decompose queries to understand and process better 
their parts 

Approach: 
– We define a sub-query as a meaningful smaller phrase or term 

that is included in the original query, and we automatically 
decompose the query to subqueries 

• NLP procedures (e.g. PoS tagging, stop-word removal) and task-specific NLP 
rules are used 

• For example the triad Noun-Verb-Noun forms a sub-query 

– The ESA distance is evaluated for every sub-query – concept 
pair 

– If the score is higher than our step-1 threshold (0.8), then the 
concept is selected 
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Query processing: Step 3 

Example: the query Find shots of a diver wearing 
diving suit and swimming under water is split into 
the following four sub-queries: diver wearing diving 
suit, swimming, water 

• If for every sub-query at least one concept is 
selected we consider the query completely 
analyzed and we proceed to video shot retrieval 
component 

• If for a subset of the sub-queries no concepts have 
been selected we continue to step 4 

• If for all of the of the sub-queries no concepts have 
been selected we continue to step 5 

 

Step 1  

Step 2 

Step 3  

Step 4 

Step 5 
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Query processing: Step 3 

• On average, a query was broken down to 3.7 sub-
queries  

• For none of the test queries there was at least one 
concept from our pool matched to each sub-query 

• For 17 out of 27 queries, concepts were matched 
to a subset of the sub-queries, thus the processing 
continued to step 4 

• For the remaining 10 queries, no concept was 
matched to any of their sub-queries, thus the 
processing continued to step 5  

 

 

 

 

 

 

Step 1  

Step 2 

Step 3  

Step 4 

Step 5 
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Query processing: Step 4 

Motivation: For a subset of the sub-queries no 
concepts were selected due to their small semantic 
relatedness (i.e., in terms of ESA measure their 
relatedness is lower than the 0.8 threshold)  

Approach: 
– For these sub-queries the concept with the higher value of ESA 

measure is selected, and the we proceed to video shot 
retrieval 

 Example: 

 

Step 1  

Step 2 

Step 3  

Step 4 Query: Find shots of one or more people walking or bicycling on a bridge during daytime  

Sub-queries Selected concepts (ESA score) 

Steps 2,3 
• people walking 
• bicycling  
• bridge 

• walking (1.0) 
• bicycle-built-for-two (1.0) 
• suspension bridge (1.0) 
• bicycles (0.85) 
• bridges (0.84) 
• bicycling (0.84) 

Step 4 • daytime  • daytime outdoor (0.74) 
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Query processing: Step 5 

Motivation: For some queries none of the above 
steps is able to select concepts 

Approach: 
– Our MED16 000Ex framework is used 

– The query title and its sub-queries form an Event Language 
Model 

– A Concept Language Model is formed for every concept using 
retrieved articles from Wikipedia 

– A ranked list of the most relevant concepts and the 
corresponding scores (semantic correlation between each 
query-concept pair) is returned 

– We proceed to video shot retrieval component 

Step 1  

Step 2 

Step 3  

Step 4 

Step 5 
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Query processing: Step 5 

Example: For the query Find shots of a person 
playing guitar outdoors the framework returns the 
following concepts: outdoor, acoustic guitar, electric 
guitar and daytime outdoor  

Step 1  

Step 2 

Step 3  

Step 4 

Step 5 
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Video shot retrieval 

• The query’s concept vector is formed by the corresponding 
scores of the selected concepts 

• If a concept has been selected in steps 1, 3, 4 or 5 the 
corresponding vector’s element is assigned with the 
relatedness score (calculated using the ESA measure) and if it 
has been selected in step 2 it is set equal to 1 

• Histogram intersection calculates the distance between 
query’s concept vector and keyframe’s concept vector for 
each of the test keyframes 

• The 1000 keyframes with the smallest distance from query’s 
concept vector are retrieved 
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Submitted Runs 

• We submitted both fully-automatic and manually-assisted 
runs 

• For the manually-assisted ones 
– We used the same fully-automatic system, but  

– A member of our team that was not involved in the development of our AVS 
system took a look at each query and manually suggested sub-queries for it, 
without knowledge of the automatically-generated ones 

– The manually defined sub-queries were added to the automatically-
generated ones, and our automatic AVS system was applied 
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Submitted Runs 

ITI-CERTH 1:  
– Late fusion of the direct output from 5 DCNNs for ImageNet 1000 concepts 

– SVM-based concepts detectors for 345 TRECVID SIN concepts 

ITI-CERTH 2:  
– Late fusion of the direct output from 5 DCNNs for ImageNet 1000 concepts 

– The direct output of the FT network for 345 TRECVID SIN concepts 

ITI-CERTH 3: ITI-CERTH 1 run without step 4 

ITI-CERTH 4: ITI-CERTH 1 run without step 2 
 

Submitted run: ITI-CERTH 1  ITI-CERTH 2 ITI-CERTH 3  ITI-CERTH 4 

MXinfAP  
(fully-automatic) 

0.051 0.042 0.051 0.051 

MXinfAP 
(manually-assisted) 

0.043 0.037 0.037 0.043 
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Results (fully-automatic runs) 
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Results and conclusions 

• Training SVMs on DCNN-based features instead of using the direct 
output of the DCNNs, for the 345 TRECVID SIN concepts, improves the 
accuracy (i.e., run ITI-CERTH 1 outperforms ITI-CERTH 2) 

• In the AVS 2016 dataset 

– Step 4 could be omitted for the fully-automatic runs  

• Sub-queries without high semantic relatedness can be ignored; ITI-CERTH 1 & ITI-
CERTH 3 achieve the same results 

– Step 2 could be omitted 

• String matching between the test query and concepts does not improve the 
accuracy; semantic relatedness makes the difference 

• Fully-automatic runs outperformed the manually-assisted ones 

• Our best fully-automatic run was ranked 2nd-best in the fully-automatic 
run category; it also outperformed the runs of all but one participant in 
the manually-assisted run category 

 

 



23 Information Technologies Institute 
Centre for Research and Technology Hellas 

 
Questions? 

More information and contact:  
Vasileios Mezaris, http://www.iti.gr/~bmezaris, bmezaris@iti.gr 
 

TRECVID 2016 paper:  
F. Markatopoulou, A. Moumtzidou, D. Galanopoulos, T. Mironidis, V. Kaltsa, A. Ioannidou, S. Symeonidis, K. 
Avgerinakis, S. Andreadis, I. Gialampoukidis, S. Vrochidis, A. Briassouli, V. Mezaris, I. Kompatsiaris, I. Patras, "ITI-
CERTH participation in TRECVID 2016", Proc. TRECVID 2016 Workshop, Gaithersburg, MD USA, November 2016.  
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