
1

A web-based tool for fast instance-level labeling of
videos and the creation of spatiotemporal media

fragments
Anastasia Ioannidou, Evlampios Apostolidis, Chrysa Collyda, Vasileios Mezaris

Abstract—This paper presents a web-based interactive tool
for time-efficient instance-level spatiotemporal labeling of videos,
based on the re-detection of manually selected objects of interest
that appear in them. The developed tool allows the user to
select a number of instances of the object that will be used
for annotating the video via detecting and spatially demarcating
it in the video frames, and provide a short description about
the selected object. These instances are given as input to the
object re-detection module of the tool, which detects and spatially
demarcates re-occurrences of the object in the video frames. The
video segments that contain detected instances of the given object
can be then considered as object-related media fragments, being
annotated with the user-provided information about the object. A
key component for building such a tool is the development of an
algorithm that performs the re-detection of the object throughout
the video frames. For this, the first part of this work presents
our study on different approaches for object re-detection and
the finally developed one, which combines the recently proposed
BRISK descriptors with a descriptor matching strategy that relies
on the LSH algorithm. Following, the second part of this work is
dedicated to the description of the implemented tool, introducing
the supported functionalities and demonstrating its use for object-
specific labeling of videos. A set of experiments and a user study
regarding the efficiency of the introduced object re-detection
method and the performance of the developed tool indicate that
the proposed framework can be used for accurate and time-
efficient instance-based annotation of videos, and the creation of
object-related spatiotemporal media fragments.

Index Terms—Instance-level video labeling, Object re-
detection, BRISK descriptor, Locality Sensitive Hashing

I. INTRODUCTION

Nowadays there is a rapidly growing number of videos
available on the web, either on video-sharing web-sites (e.g.,
YouTube and Vimeo) or within on-line archives of content
providers, such as broadcasters and news organizations. A
main prerequisite for the consumption of this content by wide
audiences is to make it searchable and easy to access (e.g.,
via some form of links between related content, similar in
principle to the hyperlinks between text). To this direction, the
semantically coherent fragments of a video must be somehow
defined and annotated with appropriate (text-based) labels, that
would make these pieces of media searchable and linkable
with related content.

Motivated by the lack of video analysis/editing tools that
can support media fragmentation and annotation tasks, we

A. Ioannidou, E. Apostolidis, Ch. Collyda and V. Mezaris are with
the Information Technologies Institute/Centre for Research and Technology
Hellas (CERTH), Thermi 57001, Greece (email: {ioananas, apostolid, ckol,
bmezaris}@iti.gr).

built an interactive tool that can be used for semi-automatic
instance-specific labeling of video content and the creation
of self-contained spatiotemporal media fragments, based on
the re-detection of manually pre-specified objects that appear
in these pieces of media. To this end, we developed a fast
and accurate object re-detection algorithm and we integrated
it in a web-based framework that supports real-time interaction
between the user and the content. With this tool, a user can
select a number of different instances of an object by spatially
demarcating appearances of it in the video frames, while after
this a brief description about the object can optionally be given
and used as tag for video labeling. Based on this input, re-
occurrences of the selected object are automatically detected
and highlighted in the video frames (by drawing a colored
bounding box around them), while the required processing
time is only a very small fraction of the video’s overall
duration. Considering a video segment that is defined by the
first and the last detected instance of the given object as an
object-specific media fragment labeled by the user-defined tag,
we end up with a piece of annotated multimedia content that
is available for searching and linking purposes.

Starting from a baseline approach for image matching that
relies on the use of local descriptors, the main contributions
of this paper are:

• an overview of the relevant literature and the reporting on:
(a) methods that can be used at each specific step of this
basic analysis pipeline, namely the detection of interest
points, the extraction of descriptor vectors, the matching
of the computed descriptors and the geometric validation
of the defined matches, and (b) techniques that follow a
different approach for performing object re-detection or
tracking in videos

• a step-by-step evaluation process where: (a) the efficiency
of a number of different approaches that can be utilized
at each step of the processing pipeline is assessed based
on the needs for accurate and time-efficient analysis,
and (b) robust conclusions regarding the most suitable
methods are made and used for progressively defining
the methodology that we eventually propose for object
re-detection in videos

• the introduction of a technique for quick and accurate
object re-detection in videos which consists of an off-
line analysis part where the detection and extraction of
descriptor vectors from the video frames is applied, and
an on-line analysis part where the re-detection of the

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

2

object in the frames of the video is performed, based on
descriptor matching and a structure-based frame sampling
strategy that accelerates the analysis

• the description of a web-based interactive tool that inte-
grates the proposed method for object re-detection and
can be used for object-specific spatiotemporal labeling of
videos

• a comprehensive evaluation of the proposed framework
(via a user study and considering both the algorithm’s
performance and the tool’s efficacy) as a means for time-
efficient and highly accurate instance-based video anno-
tation, and a performance comparison with other object
tracking methodologies, that highlights the superiority of
the introduced method for object re-detection in videos

The rest of the paper is organized as follows: Section
II presents an overview of related work and Section III
introduces the proposed object re-detection algorithm, which
is experimentally evaluated in Section IV. Section V gives
a detailed presentation of the developed web-based tool for
video labeling, while Section VI presents the design and the
findings of the user study that was performed for evaluating
the proposed method and the developed tool. Finally, the
conclusions of this work are presented in Section VII.

II. RELATED WORK

The detection of a given object within a collection of
images or a set of video frames is most commonly performed
based on the application of an image matching strategy, where
the decision about the existence/absence of the object within
an image (or a video frame) is taken after evaluating the
visual similarity among them. Baseline approaches for image
matching usually start by representing the visual content of the
images with the help of visual descriptors. Methods that focus
on the representation of local features of the images (such
as edges and corners) are more preferable than techniques
that describe global characteristics of the images (such as
histograms) for this type of analysis, since they allow a finer
matching of features between a pair of images. Following,
a matching strategy is applied for finding correspondences
between the extracted sets of descriptors, while afterwards
a filtering step is usually performed for removing outliers.
Finally, the decision about the existence/inexistence of the
object in the image is taken via thresholding the number of
matched pairs of descriptors.

Concerning the part related to the representation of the
visual content of an image, a variety of different methods
were introduced for the detection of local features, such
as the Harris [22] corner detector, the Difference of Gaus-
sians (DoG) [34] or the Maximally Stable Extremal Regions
(MSER) [37]. These algorithms are then used in combination
with scale- and rotation-invariant local descriptors, such as
SIFT [34] and SURF [7]. Several works that aim to re-
duce the computing efforts needed for local feature detection
and description, and for matching the extracted descriptor
vectors, have been described in the literature (such as the
PCA-SIFT [27] and the Gradient Location and Orientation
Histogram (GLOH) [38] descriptors), however the time perfor-
mance of most of these methods, with some exceptions (e.g.,

[2], [17]), makes them inefficient for real-time user-interactive
applications.

To this direction, recent efforts led to the development
of new, lightweight descriptors which can be used in visual
analysis applications for mobile devices (i.e., smartphones and
tablets), that have restricted computing capabilities compared
to modern desktops. Most of these techniques perform sim-
ple pixel-based comparisons and build binary vectors, such
as the BRIEF [10], the BRISK [30], the FREAK [3] and
the ORB [44] descriptors. These descriptors offer reduced
computational complexity compared to SIFT and SURF, and
are significantly faster when used in matching tasks, since the
latter is performed via bitwise operations of the modern CPUs.
Recent surveys (see [11], [39]) that aimed to evaluate the
performance of different detectors and descriptors, indicated
the matching efficiency and the significant speed-up that binary
descriptors can provide.

As mentioned before, the accurate matching of sets of
descriptors is one of the main processing steps that are per-
formed by object re-detection techniques, and for this reason
descriptor matching strategies have attracted a lot of attention
in the last few years. Some of these strategies address the
finding of correspondences between sets of descriptors as a
k Nearest Neighbor (k-NN) search problem. Exact nearest
neighbors searching techniques, such as the simple exhaustive
search approach, offer reliable results but in most cases are
extremely time-consuming, thus, being inappropriate for real-
time applications. Aiming to shorter searching time, a variety
of methods for approximate nearest neighbor search has been
proposed, and can be divided into approaches that rely on the
use of trees and techniques that employ hashing algorithms.
The first group of methods includes, but is not limited to,
the KD-trees [8], [20], the randomized KD-trees [46], the
priority search k-means tree [40], the hierarchical k-means
tree [21] and the hierarchical clustering tree [40]. The second
group contains several hashing algorithms such as coherency
sensitive hashing [29], supervised hashing with kernels [32],
spherical hashing [45], spectral hashing [51] and locality
sensitive hashing (LSH) [16]. The latter is widely used as a
quick and effective technique for image matching and retrieval
applications, with a number of variations of it been proposed
over the last years [4], [24], [36], [53].

No matter which nearest neighbor search technique is ap-
plied, most commonly the outcome of the matching procedure
is not completely precise. For this reason, different methods
have been used for filtering outliers (i.e., pairs of erroneously
matched descriptors), such as distance ratio tests that consider
the distance between the computed nearest neighbors after a
2-NN search [34], or more elaborate geometric verification
criteria such as the RANSAC algorithm [18] and variations of
it [13], [14], [43].

Nowadays, motivated by the processing capability of mod-
ern CPUs (Central Processing Units) and GPUs (Graphics Pro-
cessing Units) that enable multi-core-based or multi-threading-
based parallel processing, a number of works that aim to im-
prove the time performance of many visual analysis algorithms
were proposed. Parallel implementations of several feature
extraction and description algorithms, such as SIFT and SURF,

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

3

were introduced over the last years, relying either on CPU- or
GPU-based processing [31], [33], [50], [52], [54]. Moreover,
a parallelized version of the KLT (Kanade-Lucas-Tomasi)
method that is mentioned later in this section, was described
in [19]. Regarding the descriptor matching process, [26] and
[47] present parallelized versions of the Brute-Force method,
while [56] and [42] described GPU-based implementations of
the KD-tree and the LSH algorithm respectively. Last but not
least, a parallel implementation of the RANSAC algorithm that
is widely used for the geometric validation of the matched
pairs of descriptors was presented in [43].

Besides the analysis workflow for image matching described
extensively above, another set of methods for object re-
detection in videos are the ones related to the so-called long-
term model-free object tracking. These methods get as input
an instance of the object in a video frame and then perform
detection and localization of the object in all consecutive
frames of the video. The accurate detection of the object’s
occurrences that appear under different illumination, viewing
position and can be partially occluded, is a key challenge in
this task as well. Many techniques of this category perform
object re-detection based on motion information. One of them
is the KLT method of [35], [49], which belongs to the so-called
Sparse Optical Flow algorithms. The latter, contrary to the
Dense Optical Flow algorithms, estimate the displacement of
only a selected number of pixels in the image, relying on local
information extracted from small windows surrounding them.
Based on the original algorithm, a pyramidal-based variation
of it was proposed in [9]. Another technique is the SURFTrac
algorithm [48] which combines SURF descriptors and motion
information in order to predict the position of the interest
points at the subsequent frame of the video, leading to a
smaller search area and, thus, reducing the needed processing
time. Moreover, the efficiency of hybrid image feature trackers
was examined in [1]. In this work, local detectors and descrip-
tors, such as FAST, BRIEF and SURF, were combined with
feature motion trackers such as the KLT, and the results were
compared with the ones obtained using each tracker separately.
A different approach is the Mean-Shift algorithm [15] which
re-detects a given object in a video frame by performing block-
level histogram comparisons, with the best target location
being the one that maximizes the similarity measured by the
Bhattacharyya coefficient. The Mean-Shift method was also
combined with SIFT [55] in a mutual support mechanism that
results in robust performance. Another approach that relies on
the use of the BRISK detector and descriptor [41], combines
matching and tracking techniques in order to re-detect interest
points extracted from the given object on subsequent frames of
the video. The reported evaluations indicate that this technique
outperforms other state-of-the-art methods.

Alternatively, a number of introduced techniques address
the object re-detection task as an on-line learning problem.
The method of [23] performs a training phase in the Fourier
space, exploiting a circulant matrix representation which leads
to detection at high frame rates. Another framework for long-
term object tracking [25] decomposes the overall task into 3
parts: tracking, learning and detection. The algorithm initially
estimates the object’s motion from frame to frame, the detector

scans every incoming image in order to localize all object’s
appearances detected so far, while the learning component of
the algorithm monitors the overall process and creates positive
and negative examples in order to avoid future errors, thus
improving the detection accuracy.

A baseline approach for object re-detection that follows the
main steps of the workflow described at the beginning of this
section was presented in [6]. According to this, the SURF algo-
rithm is used for extracting and describing the local features
of images. Then, the matching of the extracted descriptors
is performed in a Brute-Force manner, applying each time a
2-NN search in combination with a filtering criterion about
the distance of the computed neighbors [34]. Subsequently,
a geometric verification of the remaining matches based on
the RANSAC algorithm is applied to enhance the algorithm’s
robustness. Building on this, the authors of [6] introduced
a number of modifications and extensions, resulting in a
technique for fast object re-detection in videos that exhibits
improved performance both in terms of detection accuracy and
time efficiency.

III. PROPOSED APPROACH

Aiming to develop an object re-detection method that would
be integrated into the proposed video labeling tool, and mo-
tivated by the fact that the object-specific video annotation is
a semi-automatic procedure that involves real-time interaction
between the user (i.e., the video editor) and the video content,
we concluded that the analysis has to be performed in a
sufficiently quick way (without compromising the re-detection
accuracy). Based on this assumption, we initiated our study
from the method described in [6], which exhibited high re-
detection performance, trying, at the first place, to assess the
needed processing time for each analysis step that is depicted
in Fig. 1. As illustrated in this block diagram, the pipeline
includes: (a) the detection of interest points from each image,
(b) the extraction of descriptor vectors for the detected interest
points, (c) the pair-wise matching of the computed descriptor
vectors, and (d) the filtering of the outliers based on geometric
validation. After this, a final decision about the matching is
taken based on a simple thresholding of the number of matched
pairs of descriptors. For the needs of object re-detection in
videos, the parts related to the detection and description of
interest points from the given object that will be re-detected
throughout the video are applied only once, while the entire
chain of analysis is performed for every frame of the video
during its matching against the object.

Our first experiment aimed at measuring and assessing the
required processing time by each analysis step (i.e., the steps
(a) to (d) described above). The results of this evaluation are
reported in Section IV-B. From this experiment it was clearly
shown that the most time-consuming parts of the analysis are
the ones related to the detection and description of interest
points from the images (steps (a) and (b) from Fig. 1), as
well as the matching of the calculated descriptor vectors
(step (c) from Fig. 1). Based on this outcome we studied
alternative options for each of these steps. This was performed
in a progressive way, investigating each time a number of

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

4

Fig. 1 Block diagram of the core analysis steps that are applied by the object re-detection algorithm of [6]

different algorithms for one of these processing step and using
a standard pair of techniques for the other two. Every time,
the efficiency of each defined combination of methods was
evaluated based on the required processing time, while the
object re-detection accuracy was also taken into account.

For interest point detection we compared the SURF algo-
rithm, that is employed in [6], against three other techniques.
Specifically, we considered the MSER [37], the BRISK [30]
and the ORB [44] algorithms for interest point detection from
images, since, according to the findings reported in these
works, these methods can efficiently detect the descriptive
parts of the images that will be consequently used for descrip-
tor extraction and matching. The results of this evaluation are
presented in detail in Section IV-C. The conducted experiments
indicated that SURF detector is not the most efficient in terms
of running time (in fact, it is the third faster among the
evaluated methods), however its re-detection accuracy makes
this algorithm the best choice for this kind of analysis.

Having identified the most effective method for interest
point detection, we then tried to investigate alternatives for
the extraction of descriptor vectors. The SURF descriptors
used in [6] have been indicated as one of the most efficient
ones for visual content representation in the relevant literature,
outperforming in many case the effectiveness of other gradient-
based approaches (e.g., SIFT or GLOH). Motivated by the
current research trend in using more lightweight binary de-
scriptors (compared to the floating point representations of the
gradient-based descriptors) for computer vision applications,
we decided to evaluate the performance of SURF descriptors
against some of these new approaches, choosing in particular,
the BRISK, the ORB, the FREAK and the BRIEF descriptors.
As before, we compared both the time performance and the
re-detection accuracy of these binary descriptors with the
performance of the SURF algorithm. Regarding time perfor-
mance, we considered both the time needed for computing the
descriptor vectors and the time required for their matching,
since the latter also affects the overall time efficiency of
these methods. The experimental results described in Section
IV-D outline the effectiveness of the BRISK descriptor, which
ensures similar object re-detection accuracy with SURF, while
being several times faster.

The output of interest point detection and description after
processing the i–th frame of the video are the matrix Ci of
size B× 2 and the matrix Di of size B× 64, where B is the
number of detected interest points from this frame and 64 is
the length of the computed descriptor vectors. Specifically, Ci
stores the (x,y) coordinates of each detected interest point in
frame Fi and Di stores the computed 64-element binary vectors
for these points.

Based on the findings of our evaluations so far, we de-
termined the most preferred methods for the detection (i.e.,

SURF) and description (i.e., BRISK) of interest points. So, in
the next step we focused our study on techniques for matching
the extracted descriptor vectors. Contrary to the Brute-Force
2-NN search applied in [6] we examined an approach for
approximate, yet fast, nearest neighbor search that relies on
the LSH algorithm. This choice was based on the fact that the
LSH method has been shown (as reported in relevant literature,
e.g., [44]) to be effective for fast matching of binary features.
After a set of experiments for tuning the LSH algorithm’s
parameters, an approach that uses 3 hash tables and 5 bits for
the hash key was finally selected, since it exhibited the best
trade-off between matching accuracy and required processing
time. For each tested combination of methods (i.e., SURF
descriptors and Brute-Force matching, BRISK descriptors and
LSH matching), we initially evaluated the descriptor matching
efficiency based on the number of correctly matched pairs
of descriptors that occur after also applying the RANSAC-
based filtering of erroneous matches. Then, we assessed the
effectiveness of each approach in terms of required processing
time and provided object re-detection accuracy. The results
of these evaluations are reported in detail in Section IV-E,
denoting that the combination of BRISK descriptors with the
LSH-based matcher is the most efficient approach, both in
terms of time efficiency and re-detection accuracy.

Despite the fact that the use of the BRISK and LSH methods
for descriptor extraction and matching respectively led to a sig-
nificant reduction of the required processing time, as indicated
by the findings reported in Sections IV-C, IV-D and IV-E, the
parts of the analysis related to the detection and description
of interest points (i.e., steps (a) and (b) of the block diagram
of Fig. 1) are still quite time-demanding and consume over
75 % of the overall processing time. Based on this observation
and thinking of ways to further accelerate the video annotation
process, we tried to indicate parts of the analysis that need to
be performed during the re-detection of the object throughout
the video (on-line), and other parts that could be applied
during a prior (off-line) analysis process. So, we ended up
to the applicable and functional scenario where interest point
detection and description are applied on the entire set of video
frames during a, prior to video annotation, off-line processing
step, and the computed data for each frame are stored in a file.
Then, during the on-line processing where the re-detection of
instances of the given object in the video frames is performed,
interest points and descriptor vectors are computed only once
for the user-defined object, and the pre-computed files from
the off-line analysis are loaded and used for matching. For
this, we explored several options regarding the storage of the
computed BRISK descriptors. Among a variety of file formats,
such as text files, binary files and xml files, and driven by
the size of the created files which strictly affects the storage
cost of the algorithm, we ended up to the use of binary

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

5

Fig. 2 The proposed object re-detection framework. The dashed line boxes indicate the algorithm’s input, while the gray shaded
one represents the output

files due to their small file size. Moreover, aiming to further
improve the computation efficiency of the off-line step of this
methodology, we serialized the computed matrices of interest
points and descriptor vectors before storing them. Detailed
experiments about the speed-up achieved using pre-computed
data during the object re-detection procedure are presented
in Section IV-F. This section also reports the findings of the
conducted evaluations regarding the time performance of the
entire analysis pipeline (i.e., interest point detection based
on SURF, interest point description based on BRISK and
descriptor matching based on LSH) when this pre-processing
step is applied.

From the outcomes of this set of evaluations we concluded
to a new framework for object re-detection that is depicted
in Fig. 2. The developed approach was realized using the
OpenCV1 (ver. 2.4.9) library for visual analysis and the
Boost 2 (ver. 1.55.0) library for serialization and storage of the
computed descriptor vectors. The proposed technique consists
of two parts, namely the off-line and the on-line analysis part.
During the off-line analysis (see the upper box with the dot-
dashed bounding line in Fig. 2), interest point detection and
descriptor extraction are applied for every video frame Fk

1http://opencv.org/
2http://www.boost.org

(with k = 1, ...N and N being the number of video frames)
using the SURF and the BRISK algorithm respectively, and the
computed data are serialized and stored as binary files. The on-
line analysis (see the bottom box with the dot-dashed bounding
line in Fig. 2) gets 3 different types of data as input. The first
one is the set of manually selected instances of the object
Oc (with c = 1, ...W and W being the number of selections)
that will be re-detected throughout the video. The developed
algorithm creates downscaled versions of them (via pixel sub-
sampling) that will be used for detecting extremely distant
appearances of the object in the video frames (see the upper
box with the dashed bounding line in the left area of Fig. 2).
The second one is the serialized and stored data about the
detected interest points and the extracted descriptors of each
frame that were created by the off-line analysis (see the middle
box with the dashed bounding line in the left area of Fig. 2).
The third one is a matrix S that contains information about the
shot-level structure of the video, extracted after processing the
video with a shot segmentation algorithm, e.g., from [5].

After having all the needed input available, the algorithm
extracts descriptor vectors for each instance of the object (both
the provided ones and the automatically created downsized
versions of them), using the SURF and BRISK methods for
interest point detection and description respectively. Then, the
analysis of the video is performed as depicted in Fig. 2 and

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

http://opencv.org/
http://www.boost.org

6

presented in detail in Algorithm 1, by applying the frame-
sampling strategy of [6]. For doing so, the algorithm reads the
given matrix S, where Si, j, j = 1, ...5 are the information on the
i-th shot of the video. Specifically, Si,1 and Si,2 are the shot
boundaries, i.e. the index of the starting and ending frames
of the shot, and Si,3, Si,4, Si,5 are the indices of three repre-
sentative keyframes of this shot. Then, starting from the first
shot of the video it compares each given instance Oc,1 and its
downsized version Oc,2 with the 5 characteristic frames of this
shot, where the frames of the first shot are identified in matrix
S (i.e., S1, j, j = 1, ...5). For this, an LSH index is constructed
for each frame after loading its pre-computed descriptors from
the binary file. The created index is then used for matching
the indexed descriptors with the descriptors extracted from the
instance Oc,l (with c = 1, ...W and l = 1,2), by applying a 2-
NN search and the distance ratio criterion of [6]. Erroneously
matched descriptors are subsequently filtered out based on
geometric verification using the RANSAC method. The final
decision about the existence/absence of the instance Oc,l in the
matched frame is performed after thresholding the number of
defined pairs of descriptors. In case of detection the algorithm
proceeds with comparing the object’s instances Oc,l against all
frames of that shot, starting with the instance that was matched
during the initial comparison with the characteristic frames of
the shot. Otherwise it is considered that the sequence of frames
that corresponds to this shot of the video does not contain any
appearances of the given object, and the analysis continues
with the characteristic frames of the next shot until all shots
of the video have been checked. For each detected occurrence
of the object in the video frames the algorithm computes
a bounding box and stores the coordinates of its upper-left
corner (x,y), its width and its height. For the remaining frames
(the ones without detected instances of the object) a bounding
box of the form [0 0 0 0] is stored. A temporal filtering of
the overall detection results based on a sliding window of 21
frames and a set of temporal rules that decide on the existence
or absence of the object O in the middle frame of this window
is applied, forming the final output of the analysis. By applying
this frame sampling strategy the algorithm analyses in full only
the parts (i.e., the shots) of the video where the object appears
(being visible in at least one of the keyframes of these shots)
and quickly rejects all remaining parts by performing a small
number of comparisons.

Having decided about the different core analysis compo-
nents of the new object re-detection framework we evaluated
more extensively its performance, both in terms of time
efficiency and detection accuracy, using a large set of objects
and videos (see Section IV-A). In this evaluation the final
combination of the proposed method (the one that involves
the off-line analysis of the video) was compared against the
algorithms from [6] and [41]. The results of this experiment
are presented in Section IV-G and highlight the detection
effectiveness of the proposed algorithm and the considerable
gain in the time required for analysis, despite the fact that the
entire re-detection process runs in CPU. Additional compar-
ative evaluations of the proposed algorithm were carried out
with the help of the interactive tool described in Section V;
these are reported in Sections VI-B and VI-C.

IV. EXPERIMENTS

This section describes the conducted experiments that
helped us to evaluate the performance of the studied algorithms
which can be utilized at each step of the analysis pipeline (i.e.,
the detection of interest points, the extraction of descriptor
vectors and the matching of the computed descriptors), to
select the most appropriate among them (considering both
time performance and detection accuracy) and to justify our
choices that resulted in the finally proposed method for object
re-detection in videos. After this, an extensive performance
evaluation and comparison using a large dataset of videos
and objects and involving other algorithms from the state-of-
art, allowed us to extract concrete conclusions regarding the
effectiveness of the developed framework.

A. Dataset

The used dataset in our evaluations is twice the size of the
dataset described in [6] and consists of (a) 12 episodes of a
cultural heritage show of the Dutch public broadcaster AVRO 3

called “Antiques Roadshow” with 545 minutes total duration
(video frame resolution 720× 480 and video frame-rate 25
fps), and (b) 60 manually selected objects that appear in these
videos. The selected objects include paintings, cards, plates
and teapots, small carpets, pieces of jewellery and clocks.
Some of them are 2-dimensional, such as paintings, carpets,
cards and posters, while others are clearly 3-dimensional,
shown from different viewpoints, such as clocks, jars and small
statues. Indicative samples from the used collection of objects
are illustrated in Fig. 3. Based on the ground truth for this
dataset (created via human observation), 127.764 video frames
contain at least one instance of the considered objects, whereas
none of the selected objects appears in the remaining 689.469
frames of our video collection.

For the first experiments that focused on specific analysis
steps of the image matching procedure (i.e., the detection and
description of interest points and the matching of descriptor
vectors), we employed a subset of this dataset, composed of
5 different objects. These objects were selected as some of
the most challenging ones, since they were displayed in a
significant number of frames and under all considered viewing
conditions. For each object three video frames, including
a zoomed-in (denoted as “zi” in the following tables), a
zoomed-out (denoted as “zo” in the following tables) and a
rotated/occluded instance (denoted as “r/o” in the following
tables) of it respectively, were also used in these evaluations,
being part of this smaller dataset. The employed group of
images is illustrated in Fig. 4.

The used metrics in our evaluations were (a) the Precision
(P), (b) the Recall (R) and (c) the F-Score as defined by the
formulas below:

P =
t p

t p+ f p
, R =

t p
t p+ f n

, F−Score =
2× (P×R)

P+R
(1)

where tp is the number of true positives (i.e., correctly detected
instances of the object), fp is the number of false positives

3http://avro.nl

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

http://avro.nl

7

Algorithm 1 Object re-detection with efficient sampling of video frames and robustness to scale variations

Notation: Oc,l (c = 1, ...W and l = 1,2) are the W selected instances of the object (l = 1) and the created downsized versions
of them (l = 2), V is the video to be processed consisting of N frames, Fp is the p-th frame of the video and ≈ symbolizes
the matching operation. Si, j are the elements of the matrix S with the boundaries and the keyframes of each shot, and M
is the number of shots.

Input: A set of W selected instances that depict the object of interest Oc,1 (c = 1, ...W), a video V of N frames, the serialized
binary files, and the matrix with the shot segmentation analysis results S.

Ensure: A file of N entries where each one of them corresponds to a video frame and contains the coordinates of the calculated
bounding box.

1: for c = 1→W do
2: Read Oc,1 and create the downsized instance Oc,2 via pixel sub-sampling
3: end for
4: for i = 1→M do
5: Flag = MISDETECTION
6: for j = 1→ 5 do
7: Load pre-computed data for FSi, j

8: Create LSH index for FSi, j

9: for c = 1→W do
10: for l = 1→ 2 do
11: Perform Oc,l ≈ FSi, j

12: if success then
13: for k = Si,1→ Si,2 do
14: Load pre-computed data for Fk
15: Create LSH index for Fk
16: for c = 1→W do
17: for l = 1→ 2 do
18: Perform Oc,l ≈ Fk
19: if success then
20: Store [x, y, w, h] of the bounding box
21: Flag = DETECTION
22: Break
23: else
24: if c =W && l = 2 then
25: Store [0 0 0 0] (no detection)
26: end if
27: end if
28: end for
29: if Flag = DETECTION then
30: Break
31: end if
32: end for
33: end for
34: Flag = DETECTION
35: Break
36: end if
37: end for
38: end for
39: if Flag = DETECTION then
40: Break
41: end if
42: end for
43: end for
44: Perform temporal filtering on the detection results
45: Store the final outcome of the analysis

(i.e., erroneously detected instances of the object) and fn is the number of false negatives (i.e., erroneously missed instances

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

8

Fig. 3 Examples of selected objects for our experiments. (a) Static 2D or 3D objects, (b) Instances of 3D objects shown from
different points of view, (c) Multiple instances of 3D objects demonstrated on a rotating disk

of the object).
The time efficiency of each tested approach was evaluated

by expressing the needed processing time as a factor of
real-time processing, i.e., comparing these times with the
actual duration of the processed videos, thus a factor below
1 indicates faster-than-real-time processing. The experiments
were conducted on a system with an Intel Core i7 CPU at
3.4 GHz, 8GB RAM memory and a CUDA-enabled NVIDIA
GeForce GTX560 graphics card.

B. Time efficiency of the method proposed in [6]

As described in Section III, we initially tried to indicate the
most demanding parts of the algorithm from [6], in terms of
needed processing time. For this purpose, we measured the
time consumed separately by each step of the image matching
process using the set of images of Fig. 4. The results (average
values) of this assessment are presented in Fig. 5.

From this evaluation it was shown that the most compu-
tationally expensive part of the analysis is the one related to
the extraction of descriptor vectors, which accounts for 46 %
of the overall needed time. The detection of interest points
and the matching of the extracted descriptors correspond to
28 % and 24 % of the required time for analysis, respectively.

The applied geometric validation for filtering-out erroneously
matched pairs of descriptors corresponds to a very small
fraction (only 2 %) of the total processing time. Based on
these findings, we decided to focus on the investigation of
alternative techniques for implementing the first three and
most computationally demanding parts of the image matching
process.

C. Comparison of different approaches for interest point de-
tection

For interest point detection we compared the already used
SURF detector (i.e., an approximation of the Hessian matrix
using box-type filters and integral images to speed-up the
computation) against 3 different algorithms. Specifically, we
considered (a) the MSER [37] detector which detects regions
that remain stable after a number of intensity thresholdings
of the image, (b) the ORB [44] detector which relies on the
FAST corner detector enhancing it with the use of an image
scale pyramid and the Harris corner measure, and (c) the
BRISK [30] detector which exploits another variation of FAST,
called AGAST corner detector, and detects interest points in
a scale-space pyramid. The Hessian parameter of the SURF
detector was set to 400, as in [6]. For the rest of the evaluated

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

9

Fig. 4 Used objects in our matching experiments (left column) and 3 video frames depicting appearances of them under
different viewing conditions

Fig. 5 Required processing time (in msec) of each step of the
algorithm proposed in [6]

detectors, the default OpenCV parameter values were used.
As mentioned in Section III, the efficiency of each method
was evaluated based on the needed time for the detection
of interest points and the accuracy of the image matching
process. The description of the detected interest points was
based on the SURF algorithm, while the matching of the
extracted descriptor vectors was performed using the Brute-
Force 2-NN searching approach combined with distance ratio
test of [6].

The results of this assessment are presented in Tables I
and II. Table I contains data (average values) about the time
performance of each evaluated method, reporting the number
of detected interest points (first row), the needed processing
time (second row) and the time consumed per interest point
(third row). From these values it seems that the ORB and
BRISK detectors are the most time-efficient. These techniques
exhibit similar performance requiring around 10 msec for
analysing a frame and 0.018 msec per interest point. SURF is
almost 4 times slower compared to BRISK and 5 times slower
compared to ORB, however this difference is smaller if the
number of detected interest points is taken under consideration.
In particular the number of SURF-based detected interest
points is 2 and 2.5 times larger than the number of the
detected interest points using the BRISK and the ORB method
respectively. The latter highlights the discriminative ability of
the SURF algorithm and indicates that this method is less
than two times slower compared to BRISK and ORB in
terms of needed processing time per interest point. Finally,
MSER exhibited the worst time performance among the tested
approaches, detecting at the same time the smallest number of
interest points per frame.

Table II illustrates the cases where each examined approach
succeeded (X) or failed (X) to detect the given object in the
corresponding frames that included scaled (i.e., zoomed in (zi)
or zoomed out (zo)) and rotated/occluded (r/o) instances of it.
These data indicate that SURF detector clearly outperforms
the other evaluated methods, resulting in successful detection
of the object in all considered cases. The other approaches

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

10

TABLE I Time performance of the tested approaches for interest point detection

SURF MSER BRISK ORB
Detected interest points 1340 378 688 500
Processing time/frame (msec) 42.67 90.23 12.14 8.83
Processing time/interest point (msec) 0.032 0.24 0.018 0.018

TABLE II Object re-detection accuracy of the tested approaches for interest point detection

Interest point detectors
SURF MSER BRISK ORB

zi zo r/o zi zo r/o zi zo r/o zi zo r/o
Object 1 X X X X X X X X X X X X
Object 2 X X X X X X X X X X X X
Object 3 X X X X X X X X X X X X
Object 4 X X X X X X X X X X X X
Object 5 X X X X X X X X X X X X

led to a number of false negatives which varies between 20 %
and 53 % (for MSER and BRISK detector respectively). Based
on the outcome of this evaluation and motivated by our goal
to accelerate the analysis without compromising the detection
accuracy of the algorithm (as we already stated in Section III),
we concluded to use the SURF algorithm for detecting interest
points from images, despite the fact that this method is not the
fastest among the tested ones.

D. Comparison of different approaches for interest point de-
scription

Our evaluations with methods for extracting descriptor
vectors for each detected interest point included (besides the
SURF algorithm that was used in [6]) a number of binary
descriptors provided by the OpenCV library, as reported in
Section III. In particular, the considered approaches were the
BRIEF descriptor [10], the ORB descriptor [44], the BRISK
descriptor [30] and the FREAK descriptor [3]. The BRIEF
descriptor sets the value of each bit of the computed vectors
as the result of the comparison of two points determined by a
sampling pattern of randomly pre-selected points around each
detected interest point. The ORB descriptor extends BRIEF
by exploiting orientation data (i.e., from the FAST detector)
and by replacing the random sampling pattern with one
constructed via machine learning techniques. A symmetric,
circular pattern around each interest point is employed by the
BRISK descriptor, which is used for the construction of a set
of long-distance point pairs and a set of short-distance point
pairs. The first set is used for estimating the orientation of each
interest point, while the latter is used to form the descriptor
vector. The FREAK algorithm also uses a circular sampling
pattern which is though, inspired by the retinal pattern in the
eye. A cascade for comparing the point pairs obtained from the
pattern is used for defining discriminative descriptor vectors.

The results from these experiments are presented in Ta-
bles III and IV. Similarly as before, Table III focuses on
the time efficiency of these methods, considering the needed
time for both extracting and matching the descriptor vectors,
while Table IV reports the achieved object re-detection perfor-
mance of each evaluated approach. More specifically, Table III

shows the size of each vector computed by each algorithm
(first row), which directly affects the time needed for its
extraction (second row) and matching (third row). From these
measurements the BRIEF algorithm seems to be the fastest
one requiring only 4 msec per frame for descriptor extraction,
while the ORB and BRISK methods follow, being almost 2
times slower. The most time-consuming binary descriptor is
the FREAK which is several times (5 to 10) slower compared
to the other ones, while the floating point representation
used by the SURF descriptors makes their extraction by far
the most computationally expensive, and thus the slowest
approach. However, taking into account the time required for
matching the computed descriptor vectors, since this part is
directly affected by the employed descriptor, it occurs that
the three fastest approaches mentioned above (i.e., the BRIEF,
the ORB and the BRISK methods) exhibit similar overall time
performance, being significantly faster (approximately 5 times)
compared to the SURF algorithm that was used in [6].

The findings related to the object re-detection accuracy of
these methods are presented in Table IV. As shown, the SURF
method achieves the highest accuracy, while competitive per-
formance is also exhibited by the BRISK and the FREAK
algorithms. The remaining techniques (i.e., the BRIEF and
the ORB methods) appear to be the most inefficient ones,
resulting in a remarkable number of false negatives. Based
on the outcome regarding the time efficiency of the evaluated
approaches (as reported in Table III), it can be easily concluded
that the BRISK descriptor is the most suitable for this kind
of analysis, since it ensures high levels of object re-detection
accuracy, similar to the one obtained by the SURF and FREAK
descriptors, while being the least time-consuming among them
(up to 5 times faster).

E. Comparison of different approaches for matching descrip-
tor vectors

As reported in Section III, the next step of our study in-
cluded the evaluation of different methodologies for matching
the computed descriptor vectors. The considered combinations
were (a) the extraction of SURF descriptors and the search
of the best matches via a Brute-Force 2-NN search [6], and

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

11

TABLE III Time performance of the tested approaches for interest point description

SURF BRISK ORB FREAK BRIEF
Descriptor vector size 128 64 32 64 32
Description time (msec)/frame 72.10 7.77 7.93 44.04 4.07
Matching time (msec)/frame 26.83 12.74 9.27 7.37 13.68
Total time (msec)/frame 98.93 20.51 17.20 51.41 17.75

TABLE IV Object re-detection accuracy of the tested approaches for interest point description

SURF/SURF SURF/BRISK SURF/ORB SURF/FREAK SURF/BRIEF
zi zo r/o zi zo r/o zi zo r/o zi zo r/o zi zo r/o

Object 1 X X X X X X X X X X X X X X X
Object 2 X X X X X X X X X X X X X X X
Object 3 X X X X X X X X X X X X X X X
Object 4 X X X X X X X X X X X X X X X
Object 5 X X X X X X X X X X X X X X X

(b) the extraction of BRISK descriptors and the search of the
approximate best matches utilizing the LSH algorithm.

Our first experiment focused on the efficiency of each
approach expressed by the number of defined correspondences
(i.e., matches) between the paired sets of descriptors before
and after filtering outliers via the applied geometric verifi-
cation step. Specifically, based on the evaluation procedure
described in [28] we measured (a) the number of initially
matched descriptors (denoted as IM from now on) after
applying the 2-NN search and the distance ratio test, and (b)
the number of filtered matches (denoted as FM from now on)
after the geometric verification via applying the RANSAC
algorithm. Then, we computed the percentages of initially
matched pairs of descriptors and the percentages of correct
matches that passed the RANSAC test, using the formulas
below:

Match Rate (%) =
IM

min(Op,Fp)
×100

Correct Match Rate (%) =
FM
IM
×100

(2)

where Op and Fp is the number of detected interest points by
the SURF algorithm in the object of interest (O) and the video
frame (F) respectively.

The results of this experiment are reported in Table V. As
shown in this table, the extraction of BRISK descriptors and
their matching using the LSH indexes results in equivalent or
higher percentages (up to 10 % in the most challenging case of
rotated and/or occluded instances) of both initial and correct
matches compared to the corresponding approach that relies
on SURF descriptor extraction and Brute-Force matching. This
finding enhances the belief that BRISK descriptors are more
suitable for image matching purposes compared to SURF,
a conclusion that becomes more important considering the
improvement in terms of required processing time, as will be
reported below (see Table VI).

The low percentages of matched descriptors reported in
Table V are explained by the fact that only a restricted subset

of the extracted descriptors from the object of interest can
be matched when pairing the object with a video frame that
includes a scaled/rotated/occluded instance of it, and not with
just a transformed (i.e., scaled and/or rotated) instance of the
object, as is the case in [28]. Specifically, a zoomed-in instance
may be missing some parts of the object of interest, and so
the descriptors extracted from these parts of the object cannot
be matched with any of the descriptors extracted from the
zoomed-in instance. The same applies for the video frames
containing occluded instances of an object. On the other
hand, a zoomed-out instance covers only a small fraction of
the overall video frame, so the extracted descriptors from
the object of interest are matched with a very small set of
descriptors that were extracted from this specific part of the
video frame.

For evaluating the time efficiency of each combination we
used the same dataset as before (i.e., the 5 objects and 3
frames for each of them, depicting scaled and rotated/occluded
instances of the objects) and we measured the required time
for matching the computed descriptors. Moreover, the object
re-detection performance of each method was also evaluated.
The outcomes of these experiments are presented in Table VI.
These results indicate that the combination of BRISK de-
scriptors with the LSH-based matching strategy can achieve
competitive performance with the method of [6] in terms of
object re-detection accuracy. However, the significant speed-up
of the descriptor matching process (2.5 times faster analysis)
justifies the employment of LSH as a suitable approach for
matching the extracted BRISK descriptors.

F. Accelerating the object re-detection via prior analysis of
the video content

Having made evaluations and decisions about each specific
part of the analysis pipeline we studied to which extent a prior
analysis of the video could further accelerate the re-detection
of the object throughout the video. This pre-processing part
could be performed off-line (i.e., prior to the semi-automatic
(on-line) object-specific labeling of the video by the video
editor), in order to extract information that is used during the
re-detection of the specified object in the video frames. So,

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

12

TABLE V Performance comparison of the different methodologies, in terms of percentages of matched pairs of descriptors
before and after filtering outliers

SURF/BF
zi zo r/o
Match Correct match Match Correct match Match Correct match
rate (%) rate (%) rate (%) rate (%) rate (%) rate (%)

Object 1 8.02 91.67 7.35 100.00 6.68 96.67
Object 2 10.51 86.32 1.77 100.00 7.30 84.85
Object 3 0.88 66.67 14.62 98.00 1.61 54.55
Object 4 6.26 66.04 25.97 94.55 6.26 58.49
Object 5 17.19 82.24 29.07 94.55 3.96 42.86
Average 8.57 78.58 15.76 97.42 5.16 67.48

BRISK/LSH
Object 1 10.91 91.84 8.69 100.00 7.57 100.00
Object 2 11.06 91.00 1.99 83.33 7.19 87.69
Object 3 0.88 66.67 20.32 98.56 1.02 71.43
Object 4 7.08 58.33 32.00 95.57 8.15 52.17
Object 5 19.57 87.86 37.90 97.61 4.52 77.50
Average 9.90 79.14 20.18 95.02 5.69 77.76

TABLE VI Performance evaluation, in terms of needed time (in msec), of the two tested combinations for object re-detection

Combination SURF-SURF-BF SURF-BRISK-LSH
Matching Correct Matching Correct

Object time detection time detection
1 zoomed in 17.72 X 14.45 X
1 zoomed out 17.64 X 12.61 X
1 rotated/occluded 19.04 X 12.55 X
2 zoomed in 21.12 X 9.98 X
2 zoomed out 17.26 X 7.57 X
2 rotated/occluded 13.26 X 8.75 X
3 zoomed in 64.50 X 9.42 X
3 zoomed out 5.82 X 5.56 X
3 rotated/occluded 44.50 X 6.17 X
4 zoomed in 46.61 X 19.13 X
4 zoomed out 17.96 X 13.21 X
4 rotated/occluded 40.24 X 13.13 X
5 zoomed in 23.51 X 14.20 X
5 zoomed out 17.59 X 13.16 X
5 rotated/occluded 37.19 X 13.15 X
Average 26.93 11.54
SD (σ) 15.95 3.59

this off-line analysis could involve the detection of interest
points and the extraction of descriptor vectors for each frame
of the video, and the storage of this information in a way
that facilitates its use during the on-line analysis. For this, we
initially used 6 videos from the dataset and we counted the
average number of frames that can be processed per second
during the re-detection of the object throughout the video. The
evaluated methodologies included (a) the use of the SURF
algorithm for both detection and description of interest points,
(b) an accelerated version of (a) using GPU-based (where
GPU stands for Graphics Processing Unit) parallel computing,
(c) a combination of GPU-based parallelized SURF interest
point detector and CPU-based BRISK descriptor extractor,

and (d) the loading of binary files with the pre-computed
BRISK descriptors. Aiming to measure only the time needed
for interest point detection and description, we did not take
into account neither the time needed to read each frame of the
video nor the time spent for transferring data between CPU
and GPU.

According to the findings reported in Table VII, the use
of GPU-based parallel processing can accelerate the corre-
sponding CPU-based implementation 6 times, resulting in a
faster-than-real-time analysis. Moreover, the replacement of
the GPU-based parallelized SURF algorithm for descriptor ex-
traction by the related CPU-based BRISK method accelerates
further (by a factor of 1.5) the analysis, making it over 2

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

13

TABLE VII Average processing frame rate for different on-line interest point detection and description combinations in
comparison to loading files with pre-computed descriptors

Video SURF GPU SURF GPU SURF & BRISK Loading bin. files
resolution (frames/sec) (frames/sec) (frames/sec) (frames/sec)
720x480 6 36 55 326

times faster than real-time processing. However, the loading
of binary files with the pre-computed descriptors for the entire
set of video frames increases rapidly the processing speed,
making the analysis 13 times faster than real-time processing.

After this clear indication about the effectiveness of hav-
ing pre-analysed the video content, we made a number of
experiments for evaluating the time performance of the entire
object re-detection pipeline, using again the dataset of Fig. 4.
In particular we compared the required processing time, (ex-
pressed as a factor of real-time processing with a value below
1 indicating faster than real-time analysis), of the following
four approaches: (a) the method of [6] when only CPU-based
processing is employed, (b) the new designed method that
combines SURF interest point detector with BRISK descriptor
extractor and LSH-based matching, (c) the method of (b) when
a prior video analysis is performed, and (d) the method of [6]
which takes advantage of GPU-based parallel processing and
also enables faster-than-real-time-analysis. The results of this
evaluation are presented in Table VIII.

As shown in this table, the findings of our study regarding
the time performance of the core analysis parts of the object
re-detection pipeline led to a new combination that employs
the SURF algorithm for interest point detection, the BRISK
algorithm for interest point description and the LSH algorithm
for descriptor matching. When only CPU-based processing is
used, the developed method is over 2 times faster than the
corresponding method that relies on the SURF algorithm for
interest point detection and description and the Brute-Force
approach for matching them. Moreover, our idea about pre-
processing the video frames during an off-line analysis, and
then loading the pre-computed data (i.e., interest points and
descriptor vectors) for re-detecting the object in the video
frames during the on-line analysis (i.e., the re-detection of
the given object in the video frames), has proven to be quite
effective resulting in a considerable reduction of the required
time for re-detection. Specifically, the needed processing time
is 4 to 5 times smaller compared to the time needed if this pre-
processing step was not performed, while it is 2 times faster
than the algorithm of [6] which employs GPU-based parallel
processing.

G. Overall performance comparison

After experimentally justifying each parameter of the anal-
ysis pipeline and every decision that needed to be made
before the definition of the finally proposed framework for
object re-detection in videos, we extensively evaluated its
performance both in terms of time efficiency and detection
accuracy. For this, we used the large set of different objects
and videos described in Section IV-A. The proposed approach
was compared against the methods of [6] and [41], where for

the latter we used the software provided by the authors, which
takes as input the coordinates of a bounding box that spatially
demarcates the first occurrence of the object in the video and
re-detects it in the subsequent video frames. For this reason
the performance of this technique was evaluated using a subset
of our dataset, composed by 43 objects for which only one
instance was used for the re-detection.

The results of this experiment are shown in Table IX and
indicate that all the evaluated methods exhibit high Precision
scores (over 97 %), which means that a remarkably low
number of false positives was detected by each one of them.
However, the Recall scores reported in Table IX clearly show
that the detection accuracy of the algorithm from [41] is signif-
icantly lower compared to the accuracy of the other methods.
Specifically, approximately 50 % of the objects’ occurrences in
the video frames were successfully detected by this approach,
while the corresponding values for the proposed framework
and the method of [6] are 85 % and 90 % respectively.
The F-Score values reported in Table IX as a measurement
about the overall performance of each approach, highlight the
effectiveness of the developed approach and the algorithm of
[6] in fulfilling the accuracy requirements of the object re-
detection task. As illustrated by the indicative examples of
Fig. 6, the introduced algorithm is able to accurately detect
and demarcate an instance of the given object in the video
frames, that is shown under a variety of different viewing
conditions which may combine scaling (i.e., zoom-in/out),
rotation (both vertical and horizontal) and partial occlusion
of the object. However, it should be noted that great changes
in viewing distance and angle may lead to non-detection of
the object’s appearances in the video frames, resulting at a
number of false negatives which is reflected by the reported
Recall score for the proposed method. Nevertheless, as will
be presented in Section V, the developed tool allows the user
to select and use more than one instances of the object during
the re-detection and labeling of the video, which eliminates
this problem leading to a remarkably limited number of non-
detected occurrences of the object in the video frames (the
reader is referred to Fig. 12 of Section VI-B).

Regarding the time performance, the proposed algorithm
is the most efficient one despite the fact that the entire
re-detection process runs using CPU-based processing only.
Specifically, the algorithm is approximately 6 times faster
compared to [6] (which employs GPU-based processing) and
approximately 100 times faster than [41], requiring for analysis
only 3 % of the video duration (average value). The wide
range of time values reported in the last column of Table IX
is explained by the varying number of objects’ occurrences in
the video, which directly affects the number of shots and video
frames where a more detailed analysis must be performed by

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

14

TABLE VIII Performance evaluation, in terms of needed time as a factor of real-time processing (a value below 1 indicates
faster than real-time analysis), of the four tested combinations for object re-detection.

Processing time (as a factor of real-time processing)
frames

depicting
the object

SURF/SURF
BF/CPU

SURF/BRISK
BF/CPU

SURF/BRISK/LSH
(Pre-computed data)

SURF/SURF
BF/GPU

Object 1 4914 0.455 0.198 0.065 0.090
Object 2 4256 0.312 0.208 0.027 0.077
Object 3 1819 0.289 0.119 0.026 0.062
Object 4 1648 0.277 0.136 0.036 0.089
Object 5 1428 0.592 0.091 0.038 0.074
Average - 0.385 0.150 0.038 0.078
SD (σ) - 0.126 0.047 0.015 0.011

TABLE IX Performance comparison between the developed framework and the algorithms of [6] and [41]

Precision Recall F-Score Time (× real-time)
proposed approach 0.999 0.851 0.919 0.006 - 0.084
method of [6] 0.997 0.909 0.951 0.038 - 0.445
method of [41] 0.976 0.496 0.658 0.742 - 7.005

Fig. 6 Objects of interest (left column) and their detected instances (demarcated by the green bounding boxes) in the video
frames, shown under different conditions such as zoomed in/out, occluded, and occluded-rotated

the proposed framework and the algorithm of [6] (according
to the applied video-structure-based frame-sampling strategy).
Other factors that also affect the execution time of these
methods are the number and size of the object’s instances that
are given as input. Concerning the technique of [41], its time
performance is directly influenced by the number of detected
interest points from the given object that need to be matched
and tracked over sequences of frames.

V. INTERACTIVE TOOL FOR OBJECT-BASED VIDEO
LABELING

Driven by the constantly increasing needs for having on-
line available media annotated with text labels that make

these media accessible via text-based searching and enable
the establishment of hyperlinks between related content, and
motivated by the lack of tools for time-efficient and accurate
instance-based labeling of videos, we developed a web-based
framework that can be used for semi-automatic object-specific
annotation of videos and thus, the creation of object-related
and labeled spatiotemporal media fragments. The users of this
tool can be professionals and experts from the area of media
editing, enrichment and hyperlinking, that aim to integrate all
the available information to a piece of media in order to make
it easily accessible, more simply conceivable and thus, more
widely consumable. Moreover, a slight extension of this tool
that would allow the user to set as input the image of an

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

15

Fig. 7 Screenshot of the initial screen of the tool, containing brief instructions-of-use and a drop-down list for selecting a
video

object (instead of selecting it from one of the video frames)
and then perform a quick search for occurrences of this object
in the video would make it a useful tool for object-based video
retrieval and video forensics (e.g., searching for the existence
of inappropriate content via the appearance of brand names
and logos). Nevertheless, the developed tool can be also used
by amateur users which may need to process and categorize
personal collections of videos based on objects or other visual
features that appear within them. No prior knowledge about
the underlying object re-detection algorithm is required for
using the tool. The developed graphical user interface (GUI) is
based on an interactive browser-based application with a video
player which uses media fragment URI references with the
new HTML5 video tag. The application allows the selection
of instances of the object either during playing the video or
after pausing it by using JQuery.

The interface of the developed tool for instance-based spa-
tiotemporal annotation of videos is the one illustrated in Fig.7.
This initial screen briefly informs the user about the usage of
the tool and the options that are given. By following these
instructions a user can select one video from the drop down
list that is placed on the left side, right below the box with the
instructions-of-use. After selecting a video the video player of
the tool appears supporting all standard functionalities such
as play/pause the video, adjust the sound level and toggle the
video in a full screen mode, while for testing purposes a set
of example objects for this video is provided at the upper side
of the video player (see Fig. 8). The user can select any of
these objects simply by clicking on it, and then the object
automatically moves to the right side of the video player.
After pressing the “Re-detect Object” button that is enabled
for this object, the re-detection of the latter throughout the
video starts. In an actual video editing scenario, after selecting

a video the user is prompted to specify the object that will
be re-detected and spatially demarcated throughout the video.
The selection of the object can be done by using the mouse
and drawing a bounding box around an instance of the object
in one of the video frames, either during playing the video
or after pausing it (see Fig. 9a). After this initial selection
is done, the tool allows the user to adjust the position and
the size of the bounding box in order to end up with the
most appropriate (i.e., the most accurate) spatial demarcation
of the object’s instance. When the spatial re-arrangement of
the bounding box ends, the selection of the object’s instance is
performed simply by right-clicking on it, so the selected area
is snapped on the right size of the video player and a pop-up
window appears prompting the user to enter a brief description
about the object (see Fig.9b). This description will be used as
tag during the video labeling process. The instance selection
process can be repeated as many times as the user wants in
order to define additional instances of the object of interest
that are necessary for its re-detection. The latter applies in
the case of 3-dimensional objects that appear under different
viewing positions and all different views of these objects need
to be re-detected and labeled, while it can be also proven useful
for re-detecting 2-dimensional objects that appear in the video
frames under a widely different viewing distances and angles.
If a description about the object was given during the selection
of the first instance, then the user can just skip this step and
all the additionally defined instances of the object will have
the same description as the first one. Finally, the re-detection
of the manually selected object using the entire set of the user-
defined instances of it, is initiated when the user presses the
“OK” button in the tag-related pop-up window (see Fig.9a).

The first check during the analysis is about the number
of interest points that can be extracted from the selected

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

16

Fig. 8 Screenshot of the tool illustrating the drop-down list
with the available videos, the video player and the area with
the provided example objects, placed on the upper side of the
video player

instance(s) of the object. As described in Section III, the
number of detected interest points defines the number of
extracted descriptor vectors that are going to be used during
the matching of the object and the video frames for its re-
detection. If this number is very small (< 4), as in the case of
chromatically uniform objects with lack of edges and details,
the selected instance cannot be used for re-detection; if the
latter is the only one selected by the user, a pop-up window
automatically appears informing him/her about this restriction
and prompting the selection of a different instance of the object
(see Fig.10a where a part of a yellow glass jar was selected
by the user for re-detection), otherwise this specific instance
is disregarded and the re-detection of the object is performed
using the remaining user-defined instances of the object that
meet this requirement. In a different case, the processing of the
video frames starts by loading the file with the shot segments
for this video and a red timeline bar automatically appears
under the video player of the tool.

The analysis is performed in a shot-by-shot manner, starting
from the shot where the last instance of the object was
selected from. When the algorithm finishes with the processing
of the final shot of the video, it moves to the first shot
and continues the processing until reaching the shot right

Fig. 9 Screenshots of the tool illustrating: (a) the selection of
object’s instances from the video frames, and (b) the pop-up
window that appears before the re-detection starts, prompting
the user to enter a brief description about the selected object

before the first analysed shot of the video. This shot-by-shot
processing can be seen via the color change in parts of this
timeline bar, since during the analysis the parts of this bar that
correspond to video shots with detected instances of the object
are highlighted with dark blue color, while the parts with no
detected instances of the object within them are colored by
grey color (see Fig. 10b). By selecting any of these dark blue
regions of the timeline bar the user moves to the corresponding
shot of the video. After pressing the play button of the video

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

17

player the re-detected instances of the object in the frames of
this shot are shown highlighted by a green bounding box, while
a tag including the user-defined description for this object
appears in the upper right corner of the player whenever a
re-detected instance of the object appears (see Fig.10b).

Fig. 10 (a) A case where the object re-detection cannot be
performed due to limited number of extracted descriptors, and
the message that pops-up in order to inform the user, and
(b) re-detection in progress where the timeline bar indicates
the current status; blue regions represent shots with detected
instances of the object, gray regions represent shots without
detected instances of the object, and red region represents shots
that have not been processed yet

During or after the analysis of a video for the re-detection
of an object, the user can select and re-detect another, entirely
new object from this video. For doing so, the user must press
the “Create new object” button from the area in the right side

of the video player and then iterate the selection and the re-
detection procedure described above for this new object. After
this, an additional timeline bar will be shown right below the
one related to the last selected object and the analysis results
for this new object will be presented in this bar, allowing the
user’s navigation to parts of the video that contain re-detected
instances of this new object.

VI. USER STUDY

Aiming to evaluate the efficiency of the developed in-
teractive tool for object-specific labeling of videos and to
further assess the performance of the proposed object re-
detection approach, we performed a user study. In this study
the implemented object re-detection method was compared
against 3 different techniques for object tracking in videos, in
terms of required processing time and re-detection efficiency,
through a set of user trials. Afterwards the participants were
requested to fill-in a questionnaire, providing feedback about
the performance of each tested algorithm and a number of
different aspects that indicate their overall experience with the
tool.

A. User study setup

After incorporating the proposed method for object re-
detection (denoted as method 1 in the sequel) in the devel-
oped web-based framework, the latter was further extended
by integrating implementations of 3 techniques for object
tracking in videos (found in the BoofCV 4 library for real-time
computer vision applications). In particular we considered the
Sparse Flow tracker which is a modification of the pyramidal
KLT tracker [9] (denoted as method 2 in the sequel), the
Circulant tracker [23] (denoted as method 3 in the sequel),
and a fast variation of the recently proposed TLD tracker [25]
(denoted as method 4 in the sequel). Similar to the majority
of the introduced object tracking techniques from the relevant
literature, these methods process sequentially the entire set of
video frames for extracting motion information, a procedure
that may correspond to more than 15 minutes of waiting
time when analyzing a 45-minutes video from our dataset,
using a fast technique. Based on this observation, for enabling
a concrete and extensive evaluation regarding the efficiency
of the proposed tool and the performance of the integrated
methods, we defined a set of smaller videos in order to ensure
reasonable time requirements for each user trial. This new
subset consists of 14 video fragments created after manually
segmenting the original videos into pieces that correspond to
the presentation of 3 to 4 different objects of art. The duration
of these smaller videos varied between 13 and 18 minutes.
For each of these video segments we defined a set of 2 to 3
indicative objects for re-detection and we provided it to the
users for guidance and testing purposes before the beginning
of the main trial period.

Besides the quantitative evaluation of the effectiveness of
each tested method (the outcomes of which are reported in the
following Section VI-B, based on the questionnaire described

4http://boofcv.org/index.php?title=Main Page

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

http://boofcv.org/index.php?title=Main_Page

18

in [12] we prepared a questionnaire for user interface satisfac-
tion (QUIS) in order to record and analyze the participants’
feedback regarding the performance of each tested approach,
as well as their viewpoint on a variety of aspects that are
related to the usability of the tool. The latter refers at (a) the
ease-of-use and the interactivity of the developed interface,
(b) the accuracy of the object re-detection algorithm and (c)
the overall performance of the tool. We adjusted the original
questionnaire by removing parts of it that were not applicable
to our tool and by keeping only the questions that were relevant
in order to meet the needs of our tool’s evaluation purposes.
Additionally, we modified the 10 scales used in QUIS to 5
in order to make it easier for our user study participants to
answer the questions. The findings of the statistical analysis
of the users’ feedback are presented in Section VI-C.

The participants in this user study were 10 research as-
sistants (8 male, 2 female) between 24 and 33 years old,
from the Information Technologies Institute of the Centre
for Research and Technology, Hellas. 5 of them reported no
previous knowledge or experience with object re-detection or
tracking algorithms, 2 of them mentioned limited experience,
while the rest were familiar with this research field.

During the first part of the user study, each participant was
given time to experiment with the tool in order to get familiar
with it, and then was requested to perform 3 different pairs of
runs. In each run the participants had to select a video from the
drop-down list of the tool and perform a complete annotation
of this video based on a selected object, via re-detecting the
entire set of its re-occurrences in the video frames. This object
could be either one of the example objects of this video
or an entirely new one that was selected by the participant
by applying the procedure described in Section V. For the
re-detection of the selected object throughout the video two
different approaches had to be used in each run; the first was
the algorithm proposed in this study, i.e., method 1 of the
tool, while the second was one of methods 2 to 4 of the tool.
Via this blind (the algorithms appeared in the interface with
the names “Algorithm 1”, “Algorithm 2” etc. and not with
their actual names in order to make sure that the participants
will not be influenced from previous relevant experience or
knowledge) pairwise testing approach, the participants were
able to make a direct performance comparison between the
considered pair of techniques, since these techniques were
used for addressing the exact same task. Due to the fact that
some of these techniques fail to re-detect instances of the
object after analysing a sequence of frames that either does
not contain any instance of it, or includes re-occurrences of
the object shown under different viewing conditions, we asked
the participants to re-apply the analysis (i.e., the selection and
re-detection of another instance of the object) as many times
as needed in order to re-detect all the different appearances of
it throughout the video. In this case, the result of every new
“run” of the selected algorithm was added to the result(s) of
the previous run(s), while the fragments of the video where
the object was previously found were not examined again.
Finally, the number of runs made by each participant for
re-detecting a particular object in the video frames using a
specific approach, as well as the required time for completing

the annotation of the entire video based on the re-detection of
this object, were logged and used for evaluating the efficiency
of the video labeling tool and the re-detection accuracy of
each considered approach. The outcomes of this assessment
are presented in Section VI-B. Moreover, aiming to compare
the performance of the proposed algorithm (considering both
analysis time and re-detection accuracy) against the efficiency
of the other object tracking methods in a way similar to
the evaluations presented in IV-G, the analysis results of a
“one-click annotation” process where the user was allowed to
select only one instance of the object and use it for its re-
detection throughout the video were also recorded and used
for further processing. The conclusions of this evaluation are
also reported in the following Section VI-B.

The second part of the user study involved the answering
of the designed QUIS questionnaire. Firstly, each participant
had to fill-in a set of questions about his/her experience after
using the tool, reporting any prior knowledge on algorithms
and tools for object re-detection in videos, assessing the
completeness of the provided instructions-of-use and giving
an overall description regarding his/her practice with the tool.
Following, there was a set of questions related to the usability
of the developed user interface, where each participant had
to report his/her opinion about the spatial arrangement of the
provided information, the speed of interaction with the tool,
the clarity of the pop-up messages of the tool and any kind of
bugs during the use. The next block of questions was relevant
to the performance of the integrated object re-detection ap-
proaches, where the participants had to qualitatively evaluate
the detection accuracy and the time efficiency of each tested
technique, and to decide about the most effective among them.
The last part of the questionnaire focused on the participants’
perspective regarding the overall usability of the tool and
its efficiency on addressing the task of object-based video
labeling, where a qualitative assessment about the overall
experience with the tool, as well as potential suggestions, were
requested.

B. Quantitative analysis of video labeling results

The analysis of the recorded results after the “one-click an-
notation” procedure validated the effectiveness of the proposed
approach and highlighted its superiority against the other
tested techniques. As reported in Table X the performance
of the proposed approach in terms of Precision, Recall and
F-Score is remarkably high and slightly better than the one
reported in Table IX. The algorithm was able to re-detect
occurrences of the given objects in the video frames, exhibiting
robustness in scaling (i.e., zoom-in/out), rotation (both hori-
zontal and vertical) and occlusion of the object as illustrated
in the upper two objects of Fig. 11, and resilience to slight
changes in illumination, as depicted in the bottom two objects
of Fig. 11. Regarding the other methods, the Sparse Flow
tracker is the only one that exhibits very high Precision score,
which means a very limited number of erroneous detections,
however the computed Recall score indicates its very poor
performance in detecting the appropriate occurrences of the
object in the video frames, which decreases dramatically the

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

19

TABLE X Performance comparison between the proposed object re-detection approach and the three object tracking algorithms
that were integrated into the developed tool for object-specific video labeling, after applying the “one-click-annotation” process

Precision Recall F-Score Time (× real-time)
proposed approach 0.999 0.891 0.942 0.001 - 0.150
Sparse Flow tracker 0.985 0.055 0.104 0.356 - 0.391
Circulant tracker 0.122 0.220 0.157 0.397 - 0.441
fast TLD tracker 0.224 0.077 0.114 0.352 - 0.472

Fig. 11 Selected objects using the crop function of the developed tool (left column) and their detected instances (demarcated by
the green bounding boxes) in the video frames, shown under different viewing conditions that may combine scaling, rotation
(both vertical and horizontal), occlusion and changes in illumination

overall F-Score of this method. The Circulant and the fast TLD
tracker appeared to be very sensitive to false alarms, something
that is proven by their very low Precision scores, while they
also seemed to be incapable to correctly detect the object in
the video frames, resulting in quite small Recall values.

The superiority of the proposed method over the other tested
algorithms is also confirmed in terms of needed processing
time, since it was shown to be 7 to 100 times faster than real-
time processing, depending on the number of object’s instances
in the video frames, while the other methods are approximately
2.5 times faster than real-time analysis. Please note that the
slightly increased values regarding the time performance of the
proposed method compared to the values reported in Table IX
are explained by the fact that the used video fragments in these
experiments contain a significantly larger number of object’s
occurrences as percentage of the number of video frames, com-
pared to the videos that were used in the evaluations reported
in Section IV-G. The latter means that the gain in running
time is much bigger when analysing larger videos, where the
algorithm filters out considerably more fragments that do not
contain occurrences of the object, and thus accelerates even
more the analysis built on the structure-based sampling of the
video frames.

Nevertheless, as stated in Section IV-G the introduced
algorithm fails to detect appearances of the given object
that are shown after major changes at the viewing distance

(i.e., significantly zoomed-in/out instances) and angle (i.e.,
horizontally rotated instances). As illustrated in the upper
part of Fig. 12 a number of occurrences of the given objects
were not detected through the “one-click annotation” process
due to great differences in scale and viewing angle between
the selected instances and their appearances in the video
frames, combined in some cases with partial occlusion which
makes the re-detection process an even more challenging
task. For addressing this issue, the developed tool enables
the selection of more than one instances of the object of
interest (as described in Section V) and the use of these
additional instances during the re-detection of the object and
the spatiotemporal annotation of the video. The latter results in
successful detection and demarcation of even the most extreme
variations of these objects in the video frames, as depicted by
the lower part of Fig. 12, leading to a zero number of false
negatives (i.e., Recall score equal to 1) without affecting the
algorithm’s Precision (as reported in Table XI).

Concerning the processing time for object re-detection when
more than one object’s instances are used, the extra time
required for the selection of additional instances (which is
expected to be limited for a video editor with a detailed
knowledge about the video content) is partially gained back
due to faster analysis. The latter is explained by the application
of less time-demanding operations for the RANSAC-based
geometric validation of the matched pairs of descriptors during

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

20

Fig. 12 Upper part: selected objects using the crop function of the tool and their non-detected instances in the video frames
due to great changes in viewing distance and angle. Lower part: selected sets of objects’ instances using the crop function of
the tool and their successfully detected instances in the video frames, demarcated by the green bounding boxes

TABLE XI Performance comparison in terms of Precision, Recall and Processing time when the re-detection of 5 objects in
the video frames is based on a single instance (Case 1) and a set of 2 to 4 different instances (Case 2)

Case 1 (only 1 instance is used) Case 2 (2 - 4 instances are used)

Precision Recall
Processing time
(msec / x real-time) Precision Recall

Processing time
(msec / x real-time)

Object 1 1.000 0.886 39.41 / 0.036 1.000 1.000 39.03 / 0.036
Object 2 1.000 0.914 30.89 / 0.036 1.000 1.000 17.97 / 0.021
Object 3 0.992 0.874 61.89 / 0.068 0.992 1.000 39.33 / 0.043
Object 4 1.000 0.878 21.50 / 0.022 1.000 1.000 10.56 / 0.011
Object 5 1.000 0.772 9.25 / 0.010 1.000 1.000 8.27 / 0.010

the comparison of the appropriate object’s instance with the
video frames that contain occurrences of this specific instance.
Table XI reports the needed processing time for annotating 5
different video fragments using 5 different objects that appear
in these videos under extremely varying viewing positions,
considering only 1 instance of the object in the first case (case
1 in Table XI) and 2 to 4 different instances in the second
case (case 2 in Table XI). As can be seen, the analysis time
is similar or even smaller in the second case when a set of
instances is used during the analysis, while at the same time
the re-detection performance meets the highest requirements
for 100 % accurate object-based labeling of videos.

The last quantitative evaluation focused on the required time
for performing an accurate and complete annotation of a video
based on a selected object. As described in Section VI-A each
participant of the user study was requested to select a number
of instances of the object of interest and re-apply the analysis

as many times as needed, in order to result to a fully annotated
video based on the re-detected appearances of this object.
This evaluation highlighted the advantages of the proposed
object re-detection methodology over the examined techniques
(as well as other motion-based approaches from the relevant
literature) for object tracking in videos. In particular, the de-
veloped approach is able to detect and demarcate occurrences
of the given object throughout the entire video, indicating
its appearances in parts of the video that are not necessarily
contiguous, and can be intermittent by video segments that
do not contain appearances of the object. Contrary, the other
3 assessed methods were able to detect the object’s instances
only in short sequences of video frames starting right after
the frame with the user-defined instance and ending to the
final frame of the corresponding shot segment of the video,
failing to re-detect it in the next shots of the video even if
they contain extremely similar instances with the given one.

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

21

TABLE XII Performance comparison between the proposed object re-detection approach and the three object tracking
algorithms that were integrated into the developed tool for object-specific video labeling, after applying the complete object-
based labeling of the videos

Precision Recall F-Score Time (× real-time)
proposed approach 0.999 1.000 0.999 0.018 - 0.157
Sparse Flow tracker 0.985 1.000 0.992 2.514 - 13.596
Circulant tracker 0.107 1.000 0.193 2.438 - 12.913
fast TLD tracker 0.378 1.000 0.549 2.325 - 13.267

Moreover, the Sparse Flow and the TLD trackers exhibited
limited robustness to gradual changes in scale, failing to detect
consecutive appearances of the object in the same shot of the
video after gradual minor changes in scale. Due to this limited
re-detection performance the users had to re-apply the analysis
for labeling the entire video, selecting each time a new instance
of the object and repeating this process, at least, as many times
as the number of the different video segments (i.e., shots) that
contain appearances of the object.

For the used dataset the number of performed iterations for
labeling these videos using one of the evaluated object tracking
approaches varied between 7 and 44. The data extracted from
the files that logged the actions of each participant in the
user study are presented in Table XII. The reported values
indicate the indisputable advantage of the proposed method
over the other object tracking approaches, and demonstrate the
efficiency of the developed framework as a tool that enables
quick and accurate semi-automatic instance-specific labeling
of videos, demanding only a small fraction of the video’s
duration (varying between 1.8 % and 15.7 %) for analysis.
The evaluated object tracking approaches can also lead to high
Recall scores (identifying the entire set of objects’ occurrences
in the video frames via performing iterative instance selection
and re-detection), with the Sparse Flow tracker being the
only one that can lead to limited number of false alarms.
Nevertheless, the required time for completing the object-
based labeling of videos with this method is approximately
2.5 to 13.5 times slower than real-time processing, making this
approach insufficient for real-time video editing operations.

C. Analysis of users’ feedback

After decoding the collected information from the filled
questionnaires, the outcomes regarding the usability of the
developed tool and the overall experience with the imple-
mented user interface are demonstrated in Fig.13. More specif-
ically, the provided instructions-of-use were judged as “Suffi-
cient/Clear” (average score 4.5 where 1 stands for “Confusing”
and 5 stands for “Clear”), while the overall experience of
the participants was characterized as “Very Good” (average
score 4.1 where 1 stands for “Terrible” and 5 stands for
“Excellent”). Concerning the user interface the participants
reported that the arrangement of information on the screen was
“Sensible” (average score 4.8 where 1 stands for “Confusing”
and 5 stands for “Sensible”) and the response time of the user
interface was “Fast” (average score 4 where 1 stands for “Very
Slow” and 5 stands for “Very Fast”).

Fig. 13 Participants’ feedback (mean values) regarding the
usability of the tool

The efficiency of the various tested object re-detection
approaches regarding both speed and re-detection accuracy is
shown in Fig.14. The best, in terms of time performance, was
the algorithm introduced in this study, achieving an average
score of 4.7 in the range 1 to 5. Substantially below this,
the Sparse Flow and the Circulant trackers followed with a
rating of 2.8, while the most time-consuming one was the
TLD tracker with a rating of 2.3. Concerning the detection
accuracy the proposed method was judged as the best one,
getting an average score of 4.4 in the range 1 to 5. The Sparse
Flow tracker was rated as the second best with a mean score
of 2.9, the TLD tracker with 2.4, while the Circulant tracker
got the lowest score of 1.6. The low scores that were assigned
by the participants to the Sparse Flow, the Circulant and TLD
tracker are explained by the fact that, as mentioned before,
after detecting one of the object’s instances in a sequence of
video frames these methods are very sensitive in the detection
of other occurrences that appear in non-consecutive parts of
the video or under different viewing positions, either failing
to re-detect them (increasing the number of false negatives)
or leading to erroneous detections (producing a number of
false alarms). As described above, the participants had to
re-run these algorithms as many times as the number of
different video fragments (i.e., shots) with appearances of
the given object in order to re-detect all of them throughout
the entire video. As reported previously, this number varied
between 7 and 44, with the Sparse Flow tracker being the most
demanding one. However, this tracker was the most efficient
compared to the other two in terms of Precision causing a zero
number of false alarms, contrary to the other object tracking
techniques (i.e., the Circulant and the fast TLD tracker) which

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

22

TABLE XIII Participants’ general feedback (based on the selection from a pre-defined pool of words/phrases) regarding the
developed tool

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10
Attractive X X X
Complex
Confusing
Easy to use X X X X X
Effective X X X
Frustrating
Hard to use
Inspiring X
Straightforward X X X X
Time-consuming
Time-saving X X X
Useful X X X X X X X X

Fig. 14 Participants’ feedback (mean values) regarding the
efficiency of the tested object re-detection approaches, in terms
of processing speed and re-detection accuracy

resulted at a notably large number of false positives that caused
the dissatisfaction of the users regarding these algorithms’
effectiveness. Based on these values and aiming to determine
whether there was a statistically significant difference between
the proposed method and the Sparse Flow tracker which
was indicated as the second best approach, we performed a
Wilcoxon signed-rank test at 5 % significance level for each
case, setting as “Hypothesis 0” the fact that there is no actual
difference between these techniques. The test statistic for our
data was 0 in both cases, while according to the Wilcoxon
signed-ranks table the critical value for a = 0.05 and n = 10
(where n is the number of participants at the user study) is
8. So, the test statistic is way lower than the defined critical
value, which means that “Hypothesis 0” is rejected and, thus,
there is indeed a statistically significant difference between
these approaches.

Concerning the functionality and the usability of the tool,
by selecting from a pool of 16 predefined words or phrases
given in the questionnaire, 80 % of the participants evaluated
it as “Useful”, 50 % of them characterized it as “Easy to
use”, while 30 % of the users described it as “Attractive” and
“Effective”. The words selected by each user are shown in

Table XIII. Furthermore, all users declared that they would
suggest the tool to another friend or colleague, while some of
them provided useful feedback regarding the interface of the
tool. Based on this feedback, we were encouraged to mark the
temporal boundaries of each shot of the video on the timeline
bar of the tool, in order to distinguish the shot segments of
the video and make the navigation of the user easier and more
precise.

VII. CONCLUSIONS

The objective of this study was twofold; initially we in-
troduced an approach for fast object re-detection in videos,
and then, we presented a tool that integrates this method and
performs quick and accurate semi-automatic object-based spa-
tiotemporal labeling of videos. The latter is realized through an
interactive process that allows the re-detection and demarca-
tion of re-appearances of the given object in the video frames.
In particular, aiming to improve the time performance of the
algorithm from [6], we replaced the use of SURF descriptors
by employing the more lightweight BRISK binary descriptors,
and we substituted the time-demanding Brute-Force 2-NN
search for matching the computed descriptor vectors with a
faster, LSH-based descriptor matching strategy that leads to a
significant acceleration of the analysis. Moreover, aiming to
achieve a further speed-up of the object-based video labeling
process we partitioned the applied workflow into off-line
analysis, where the descriptor vectors for the entire set of video
frames are extracted and stored, and on-line analysis, where
the re-detection of the object throughout the video through
time-efficient descriptor matching and via exploiting informa-
tion about the shot-level structure of the video, is performed.
The developed object re-detection technique was integrated
into a web-based tool that allows users to select a number
of instances of an object that appears in a video by spatially
demarcating them in the video frames, and then automatically
detect and label re-occurrences of this object in consecutive or
non-consecutive frames of the video, thus performing object-
based spatiotemporal annotation of the video. The conducted
experiments showed that the proposed object re-detection
algorithm is capable of several times faster-than-real-time

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

23

analysis, while being highly accurate due to its robustness in
scale and rotation transformations. Moreover the performance
comparisons against other object tracking approaches from the
relevant literature illustrated the superiority of the developed
method, concerning both the time efficiency and the re-
detection precision. Finally, the outcomes of the user study
indicated that the developed web-based framework can be
considered as a complete approach for object-based video
labeling, and for the creation of instance-based spatiotemporal
fragments.

VIII. ACKNOWLEDGMENT

This work was supported by the European Commission un-
der contract FP7-600826 ForgetIT and FP7-287911 LinkedTV.

REFERENCES

[1] Abeles P (2013) Examination of Hybrid Image Feature Trackers. Inter-
national Symposium on Visual Computing (ISVC)

[2] Agrawal M, Konolige K, Blas M.R (2008) CenSurE: Center Surround
Extremas for Realtime Feature Detection and Matching. Computer
Vision ECCV 2008, 5305:102-115

[3] Alahi A, Ortiz R, Vandergheynst P (2012) FREAK: Fast Retina Key-
point. IEEE Conference on Computer Vision and Pattern Recognition:
510-517

[4] Andoni A, Indyk P (2008) Near-optimal Hashing Algorithms for Ap-
proximate Nearest Neighbor in High Dimensions. Communications of
the ACM, 51(1):117-122

[5] Apostolidis E, Mezaris V (2014) Fast Shot Segmentation Combining
Global and Local Visual Descriptors. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP): 6583 - 6587

[6] Apostolidis E, Mezaris V, Kompatsiaris I (2013) Fast object re-detection
and localization in video for spatio-temporal fragment creation. IEEE In-
ternational Conference on Multimedia and Expo Workshops (ICMEW):
1-6

[7] Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-Up Robust Fea-
tures (SURF). Computer Vision and Image Understanding, 110(3):346-
359

[8] Bentley J.L (1975) Multidimensional Binary Search Trees Used for
Associative Searching. Communications of the ACM, 18(9):509-517

[9] Bouguet J.-Y (1999) Pyramidal Implementation of the Lucas Kanade
Feature Tracker: Description of the Algorithm. Intel Corporation Mi-
croprocessor Research Labs

[10] Calonder M, Lepetit V, Ozuysal M, Trzcinski T, Strecha C, Fua P
(2012) BRIEF: Computing a Local Binary Descriptor Very Fast. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 34(7):1281-
1298

[11] Canclini A, Cesana M, Redondi A, Tagliasacchi M, Ascenso J, Cilla
R (2013) Evaluation of low-complexity visual feature detectors and
descriptors. 18th International Conference on Digital Signal Processing
(DSP): 1-7

[12] Chin J.P, Diehl V.A, Norman K.L (1988) Development of an Instru-
ment Measuring User Satisfaction of the Human-computer Interface.
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems: 213-218

[13] Chum O, Matas J (2005) Matching with PROSAC - Progressive Sample
Consensus. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 1:220-226

[14] Chum O, Matas J (2008) Optimal Randomized RANSAC. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 30(8):1472-1482

[15] Comaniciu D, Meer P (2002) Mean shift: a robust approach toward
feature space analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(5):603-619

[16] Datar M, Immorlica N, Indyk P, Mirrokni V.S (2004) Locality-sensitive
Hashing Scheme Based on P-stable Distributions. Proceedings of the
Twentieth Annual Symposium on Computational Geometry: 253-262

[17] Ebrahimi M, Mayol-Cuevas W.W (2009) SUSurE: Speeded Up Sur-
round Extrema feature detector and descriptor for realtime applications.
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops: 9-14

[18] Fischler M.A, Bolles R.C (1981) Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. ACM Communications, 24(6):381-395

[19] Fleury M, Self R.P, Downton A.C (2004) Development of a Fine-grained
Parallel Karhunen-Loeve Transform. Journal of Parallel and Distributed
Computing, 64(4):520-535

[20] Friedman J.H, Bentley J.L, Finkel R.A (1977) An Algorithm for Finding
Best Matches in Logarithmic Expected Time. ACM Transactions on
Mathematical Software (TOMS), 3(3):209-226

[21] Fukunaga K, Narendra P.M (1975) A Branch and Bound Algorithm for
Computing k-Nearest Neighbors. IEEE Transactions on Computers, C-
24(7): 750-753

[22] Harris C, Stephens M (1988) A combined corner and edge detector.
Proc. of Fourth Alvey Vision Conference: 147-151

[23] Henriques J.F, Caseiro R, Martins P, Batista J (2012) Exploiting the
Circulant Structure of Tracking-by-detection with Kernels. Proceedings
of the 12th European Conference on Computer Vision, Part IV:702-715

[24] Joly A, Buisson O (2008) A Posteriori Multi-probe Locality Sensitive
Hashing. Proceedings of the 16th ACM International Conference on
Multimedia: 209-218

[25] Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-Learning-Detection.
IEEE Transactions on Pattern Analysis & Machine Intelligence, 34(7):
1409-1422

[26] Kato K, Hosino T (2010) Solving k-Nearest Neighbor Problem on
Multiple Graphics Processors. Proceedings of the 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing: 769-
773

[27] Ke Y, Sukthankar R (2004) PCA-SIFT: A More Distinctive Represen-
tation for Local Image Descriptors. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition: 506-
513

[28] Khvedchenya E (2012) A battle of three descriptors: SURF,
FREAK and BRISK. http://computer-vision-talks.com/articles/2012-08-
18-a-battle-of-three-descriptors-surf-freak-and-brisk/. Accessed Decem-
ber 2014

[29] Korman S, Avidan S (2011) Coherency Sensitive Hashing. Proceedings
of the 2011 International Conference on Computer Vision: 1607-1614

[30] Leutenegger S, Chli M, Siegwar R (2011) BRISK: Binary Robust
Invariant Scalable Keypoints. Proceedings of the IEEE International
Conference on Computer Vision: 2548-2555

[31] Liang-Chi C, Tian-Sheuan C, Jiun-Yen C, Chang N.Y.-C (2013) Fast
SIFT Design for Real-Time Visual Feature Extraction. IEEE Transac-
tions on Image Processing, 22(8): 3158-3167

[32] Liu W, Wang J, Ji R, Jiang Y. G, Chang S.F (2012) Supervised Hashing
with Kernels. IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR) (Oral session): 2074-2081

[33] Liu Z, Xing B, Chen Y (2013) An Efficient Parallel SURF Algorithm
for Multi-core Processor. Computer Engineering and Technology: 27-37

[34] Lowe D.G (2004) Distinctive Image Features from Scale-Invariant
Keypoints. International Journal of Computer Vision, 60(2):91-110

[35] Lucas B.D, Kanade T (1981) An Iterative Image Registration Technique
with an Application to Stereo Vision. Proceedings of the 7th Interna-
tional Joint Conference on Artificial Intelligence, 2:674-679

[36] Lv Q, Josephson W, Wang Z, Charikar M, Li K (2007) Multi-probe LSH:
Efficient Indexing for High-dimensional Similarity Search. Proceedings
of the 33rd International Conference on Very Large DataBases: 950-961

[37] Matas J, Chum O, Urban M, Pajdla T (2002) Robust Wide Baseline
Stereo from Maximally Stable Extremal Regions. Proceedings of the
British Machine Vision Conference:36.1-36.10

[38] Mikolajczyk K, Schmid C (2005) A performance evaluation of local
descriptors. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 27(10):1615-1630

[39] Miksik O, Mikolajczyk K (2012) Evaluation of local detectors and
descriptors for fast feature matching. 21st International Conference on
Pattern Recognition (ICPR): 2681-2684

[40] Muja M, Lowe D.G (2014) Scalable Nearest Neighbor Algorithms for
High Dimensional Data. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 36(11): 2227-2240

[41] Nebehay G, Pflugfelder R (2014) Consensus-based matching and track-
ing of keypoints for object tracking. IEEE Winter Conference on
Applications of Computer Vision (WACV):862-869

[42] Pan J, Manocha D (2011) Fast GPU-based Locality Sensitive Hashing
for K-nearest Neighbor Computation. Proceedings of the 19th ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems: 211-220

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

24

[43] Romberg S, Lienhart R (2013) Bundle Min-hashing for Logo Recogni-
tion. Proceedings of the 3rd ACM Conference on International Confer-
ence on Multimedia Retrieval: 113-120

[44] Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: An efficient
alternative to SIFT or SURF. IEEE International Conference on Com-
puter Vision (ICCV): 2564-2571

[45] Shih-Fu C, Junfeng H, Youngwoon L, Jae-Pil H, Sung-Eui Y (2012)
Spherical hashing. IEEE Conference on Computer Vision and Pattern
Recognition: 2957-2964

[46] Silpa-Anan C, Hartley R (2008) Optimised KD-trees for fast image
descriptor matching. IEEE Conference on Computer Vision and Pattern
Recognition: 1-8

[47] Sismanis N, Pitsianis N, Xiaobai S (2012) Parallel search of k-nearest
neighbors with synchronous operations. IEEE Conference on High
Performance Extreme Computing (HPEC):1-6

[48] Ta D.-N, Chen W.-C, Gelfand N, Pulli K (2009) SURFTrac: Efficient
Tracking and Continuous Object Recognition using Local Feature De-
scriptors. IEEE Conference on Computer Vision and Pattern Recogni-
tion: 2937-2944

[49] Tomasi C, Kanade T (1991) Detection and Tracking of Point Features.
CMU-CS-91-132, Carnegie Mellon University

[50] Warn S, Emeneker W, Cothren J, Apon A (2009) Accelerating SIFT
on parallel architectures. IEEE International Conference on Cluster
Computing and Workshops: 1-4

[51] Weiss Y, Torralba A, Fergus R (2008) Spectral Hashing. Advances in
Neural Information Processing Systems:1753-1760

[52] Yang D, Liu L, Zhu F, Zhang W (2011) A Parallel Analysis on Scale
Invariant Feature Transform (SIFT) Algorithm. Proceedings of the 9th
International Conference on Advanced Parallel Processing Technologies:
98-111

[53] Yue L, Deng C, Cheng L (2012) Density Sensitive Hashing. CoRR,
abs/1205.2930

[54] Zhang N (2009) Computing Parallel Speeded-up Robust Features (P-
SURF) via POSIX Threads. Proceedings of the 5th International Confer-
ence on Emerging Intelligent Computing Technology and Applications:
287-296

[55] Zhou H, Yuan Y, Shi C (2009) Object Tracking Using SIFT Features and
Mean Shift. Computer Vision and Image Understanding, 113(3):345-352

[56] Zhou K, Hou Q, Wang R, Guo B (2008) Real-time KD-tree Construction
on Graphics Hardware. ACM SIGGRAPH Asia 2008 Papers: 126:1-
126:11

Anastasia Ioannidou Anastasia Ioannidou received
her Diploma degree from the Department of Applied
Informatics of University of Macedonia, Greece,
and her M.Sc. degree in Digital Media from the
Department of Informatics, Aristotle University of
Thessaloniki, Greece, in 2010 and 2013 respectively.
She is currently working as a Research Assistant at
the Information Technologies Institute of the Centre
for Research of Technology - Hellas. Her current
research interests include image/video processing
and analysis, multimedia retrieval, object detection

and tracking.

Evlampios Apostolidis Evlampios Apostolidis re-
ceived a Diploma in Electrical and Computer Engi-
neering from the Aristotle University of Thessaloniki
in July 2007, writing a thesis on image processing.
Afterwards, he got a Master in Informational Sys-
tems from the University of Macedonia in November
2011, writing a dissertation about methods for index-
ing multi-dimensional spaces. From January 2012
he is a Research Assistant at the Information Tech-
nologies Institute (ITI) of the Centre for Research of
Technology Hellas (CERTH). His research interests

include image and video analysis.

Chrysa Collyda Chrysa Collyda is a postdoctoral
research fellow with the Information Technologies
Institute at the Centre for Research and Technology
Hellas. She received her PhD in Medical Informatics
from Medical School of the Aristotle University of
Thessaloniki in 2008. Her research interests include
bioinformatics, medical informatics, decision sup-
port systems, image processing, human computer
interaction, internet and multimedia technologies.

Vasileios Mezaris Vasileios Mezaris received the
BSc and PhD in Electrical and Computer Engineer-
ing from the Aristotle University of Thessaloniki
in 2001 and 2005, respectively. He is a Senior
Researcher (Researcher B) at the Information Tech-
nologies Institute (ITI) of the Centre for Research of
Technology Hellas (CERTH). His research interests
include image and video analysis, retrieval, event
detection, machine learning for multimedia analysis.
He served as Associate Editor for the IEEE Trans-
actions on Multimedia (2012-2015) and is a Senior

Member of the IEEE.

Multimedia Tools and Applications, Springer, vol. 76, no. 2, pp. 1735-1774, January 2017.
Author's accepted version. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-015-3125-0

	Introduction
	Related Work
	Proposed Approach
	Experiments
	Dataset
	Time efficiency of the method proposed in icme13
	Comparison of different approaches for interest point detection
	Comparison of different approaches for interest point description
	Comparison of different approaches for matching descriptor vectors
	Accelerating the object re-detection via prior analysis of the video content
	Overall performance comparison

	Interactive Tool for Object-based Video Labeling
	User Study
	User study setup
	Quantitative analysis of video labeling results
	Analysis of users' feedback

	Conclusions
	Acknowledgment
	References
	Biographies
	Anastasia Ioannidou
	Evlampios Apostolidis
	Chrysa Collyda
	Vasileios Mezaris

