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ABSTRACT
In this paper we present our study on the use of attention for ex-
plaining video summarization. We build on a recent work that
formulates the task, called XAI-SUM, and we extend it by: a) taking
into account two additional network architectures and b) introduc-
ing two novel explanation signals that relate to the entropy and
diversity of attention weights. In total, we examine the effectiveness
of seven types of explanation, using three state-of-the-art attention-
based network architectures (CA-SUM, VASNet, SUM-GDA) and
two datasets (SumMe, TVSum) for video summarization. The con-
ducted evaluations show that the inherent attention weights are
more suitable for explaining network architectures which integrate
mechanisms for estimating attentive diversity (SUM-GDA) and
uniqueness (CA-SUM). The explanation of simpler architectures
(VASNet) can benefit from taking into account estimates about the
strength of the input vectors, while another option is to consider
the entropy of attention weights.
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1 INTRODUCTION
The current practice in the Media industry for producing a video
summary requires a professional video editor to watch the entire
content and decide about the parts of it that should be included in
the summary. This is a laborious task and can be really intensive
and time-consuming in the case of long videos, or when different
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summaries should be prepared for the same video in order to be dis-
tributed via different video sharing platforms (e.g., YouTube, Vimeo,
TikTok) and social networks (e.g., Facebook, Twitter, Instagram)
with different specifications about the optimal or maximum video
duration [9]. Video summarization technologies aim to generate a
short summary by selecting the most informative and important
frames (key-frames) or fragments (key-fragments) of the full-length
video, and presenting them in temporally-ordered fashion. As dis-
cussed in [4], the use of such technologies can drastically reduce
the needed resources for video summarization in terms of both time
and human effort. Despite the recent advances in the field of video
summarization, that are mainly associated with the emergence of
modern deep learning network architectures [2], the outcome of a
video summarization method still needs to be curated by a video
editor, to make sure that all the necessary parts of the video have
been included in the summary. This curation could be facilitated if
the video summarization method is able to provide explanations
about its proposals for building the summary. The provision of such
explanations would allow the editor to progressively gain a better
understanding of the reasoning behind the proposals of the used
method, utilize it more effectively and thus reduce the needed time
for content curation.

Despite the fact that, over the last years there is an increasing
interest in explaining the outcomes of deep networks processing
video data, most works are related with network architectures for
action/event recognition [1, 13, 16, 31, 34, 40] and video classifi-
cation [6, 24, 26]. Apart from these works, other papers present
methods for explaining the outcomes of video similarity assessment
[29], video text detection [38], and anomaly detection in surveil-
lance videos [37], while a recent work, called XAI-SUM, tries to
formulate and investigate the task of explainable video summariza-
tion [4]. In this paper, we build on XAI-SUM [4] and extend it by
taking into account additional network architectures and novel ex-
planation signals, aiming to further investigate the use of attention
as explanation for video summarization. Our contributions are the
following:

• We apply the proposed methodology for explainable video
summarization in [4], on two additional state-of-the-art net-
work architectures with similar attention mechanisms (VAS-
Net [12] and SUM-GDA [23]).

• We extend the pool of explanations that were taken into
account in [4], by introducing two novel explanation signals
that are associated with the entropy and diversity of the
attention weights.

• We conduct quantitative evaluations using three state-of-
the-art attention-based network architectures (CA-SUM [5],
VASNet [12], SUM-GDA [23]) and two datasets for video
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summarization (SumMe [15] and TVSum [33]), that show
the ability of the inherent attention weights (either in their
original form or after being scored according to the strength
of the input vectors in the attention mechanism) to form
meaningful explanations of the video summarization results.

2 RELATEDWORK
2.1 Explainable video analysis
This section focuses on methods aiming to produce explanations
about the output of network architectures dealing with video data.
Bargal et al. (2018) [6], utilized internal representations of the net-
work architecture to form spatio-temporal cues that influence the
network’s classification/captioning output, and used these cues to
localize video fragments that are associated with a specific action
or phrase from the generated caption. Aakur et al. (2018) [1], for-
mulated connected structures of the detected visual concepts in
the video (e.g., objects and actions) and utilized these structures to
produce semantically coherent and explainable representations for
video activity interpretation. Stergiou et al. (2019) [34], proposed
the use of cylindrical heat-maps to visualize the focus of attention
at a frame basis and form explanations of deep networks for action
classification and recognition. Zhuo et al. (2019) [40], defined a
spatio-temporal graph of semantic-level video states (representing
associated objects, attributes and relationships) and applied state
transition analysis for video action reasoning. Roy et al. (2019) [31],
tried to explain the output of a model for activity recognition by
feeding it to a tractable interpretable probabilistic graphical model
and performing joint learning over the two. Papoutsakis and Argy-
ros (2019) [29], presented an unsupervised method that evaluates
the similarity of two videos based on action graphs representing
the detected objects and their behavior, and provides explanations
about the outcome of this evaluation. Mänttäri et al. (2020) [26],
extended the concept of meaningful perturbation, to spot the video
fragment with the greatest impact on the video classification results.
Yu et al. (2021) [38], described an end-to-end trainable and inter-
pretable framework for video text detection, that combines spatial
and motion information with an appearance-geometry descriptor
to generate robust representations of text instances. Li et al. (2021)
[24], extended a perturbation-based explanation method for video
classification networks, by a loss function that aims to increase the
smoothness of explanations in both spatial and temporal dimen-
sions. Gkalelis et al. (2022) [13], used the weighted in-degrees of
graph attention networks’ adjacency matrices to provide explana-
tions of video event recognition, in terms of salient objects and
frames. Han et al. (2022) [16], proposed a one-shot target-aware
tracking strategy to estimate the relevance between objects across
the temporal dimension and form a scene graph for each frame,
and used the generated video graph (after applying a smoothing
mechanism) for explainable action reasoning. Wu et al. (2022) [37],
extracted high-level concept and context features for training a
denoising autoencoder that was used for explaining the output of
anomaly detection in surveillance videos. Finally, Apostolidis et al.
(2022) [4], made a first attempt towards explaining video summa-
rization. In their work, called XAI-SUM, Apostolidis et al. formu-
lated the task as the production of an explanation mask indicating
the parts of the video that influenced the most the estimates of a

video summarization network about the frames’ importance. Then,
they utilized a state-of-the-art network architecture (CA-SUM) and
two datasets for video summarization (SumMe and TVSum), and
evaluated the performance of various attention-based explanation
signals by investigating the network’s input-output relationship
(according to different input replacement functions), and using a
set of tailored evaluation measures.

2.2 Attention-based explanation
A few attempts were made towards the use of attention for explain-
ing the outcomes of deep network architectures. Most works lie
within the NLP domain. Serrano and Smith (2019) [32], investigated
the use of attention weights (either on a single basis or after forming
sets of them) both solely and in combination with the gradients for
their computation, for interpreting the outcomes of an NLP model
for text classification. Wiegreffe and Pinter (2019) [36], proposed
four alternative tests to determine when/whether attention can be
used as explanation; each test allows for meaningful interpretation
of attention mechanisms in RNN models utilized for various binary
text classification tasks. Jain and Wallace (2019) [18], examined the
use of the inherent attention weights for explaining NLP models,
considering a wider range of tasks that included text classification,
natural language inference and question answering. Kobayashi et
al. (2020) [20], explored the use of weighted attention according to
the norm of the Value-based transformed input feature vectors, to
interpret the output of a pre-trained BERT model [11]. Hao et al.
(2021) [17], assessed the performance of explanations formulated
using gradient-based attention weights and the BERT model for
text classification. Chrysostomou and Aletras (2021) [7], presented
a method for improving the faithfulness of attention-based expla-
nations for text classification, taking into account explanations
formed using the inherent attention weights and their gradients,
while additional types of attention-based explanations were consid-
ered in their subsequent work [8] that focused on evaluating their
out-of-domain faithfulness. Liu et al. (2022) [25], introduced a faith-
fulness violation test to measure the consistency between several
attention-based explanations and the impact polarity. Finally, the
use of attention as explanation has been investigated recently for
interpreting the output of deep networks dealing with other tasks,
such as image classification [14, 28], image recognition [22], heart
sound classification [30] and multimodal trajectory prediction [39].

3 EXPLANATION APPROACH
We follow the video summarization and explanation approach pro-
posed in [4]. With respect to summarization, we assume that the
video is split into consecutive and non-overlapping fragments of
fixed-size 𝐿, each fragment’s importance is computed by averaging
the importance of the frames in it, and the video summary is formed
by the𝑀 top-scoring video fragments. With regards to explanation,
we consider the creation of an explanation mask that indicates the
𝑀 most influential video fragments for the estimates of a video
summarization network about the importance of the video frames.

3.1 Network architectures
We focus on visual-based network architectures that rely on the
use of a self-attention mechanism. The processing pipeline of these
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Figure 1: Upper part: the processing pipeline of attention-based network architectures for video summarization; the summary
is created by stitching the top-5 most important fragments in chronological order. Lower part: the output of the adopted
explanation approach; the number of most influential video fragments 𝑀 in the explanation mask equals to five. This figure
follows the visualization in XAI-SUM [4].

architectures is shown in the upper part of Fig. 1. Assuming a
video of 𝑇 frames and a CNN model for deep feature extraction,
the attention mechanism gets as input the frames’ feature repre-
sentations 𝑿 = {𝒙 𝒊}𝑇𝑖=1 and defines the Query- (𝑸 = {𝒒𝒊}𝑇𝑖=1), Key-
(𝑲 = {𝒌𝒊}𝑇𝑖=1, and Value-based (𝑽 = {𝒗𝒊}𝑇𝑖=1) transformations using
a triplet of linear layers (LL). Following, it computes the dot product
of the former two (𝑸 ∗ 𝑲𝑇 , where 𝑲𝑇 is the transposed version of
𝑲 ) and applies a softmax conversion, forming a 𝑇 × 𝑇 matrix of
attention weights 𝑨 = {𝑎𝑖, 𝑗 }𝑇𝑖,𝑗=1, with 𝑎𝑖, 𝑗 ∈ I. Each row of 𝑨 is
associated with a different video frame and represents its signifi-
cance for all frames of the video based on the modeled context by
the trained attention mechanism. The matrix 𝑨 is multiplied (dot
product) with 𝑽 , formulating the output of the attention mecha-
nism (𝒁 = {𝒛𝒕 }𝑇𝑡=1). The latter is then used by a trained Regressor
Network, which computes the frames’ importance scores𝒚 that are
finally utilized to calculate fragment-level importance and select
the most important fragments for building the video summary.

Based on the above, we extend the work of [4] by considering
the following visual-based network architectures:

• CA-SUM [5] integrates a concentrated attention mechanism
that focuses on non-overlapping blocks in the main diagonal
of the attention matrix and takes into account the attentive
uniqueness and diversity of the associated frames of the
video. It learns the task without supervision using a loss
function that relates to the length of the generated summary.

• VASNet [12] contains a soft self-attention mechanism that
models the frames’ dependence according to their pair-wise
similarities in a learned latent space and scores the frames us-
ing a Regressor Network. It learns the task based on ground-
truth annotations about each frame’s importance and a rele-
vance loss function (Mean Squared Error).

• SUM-GDA [23] tries to increase the diversity of the visual
content of the summary by computing global diverse atten-
tion scores (one per frame) and using these scores to form

the context vectors in the output of the attention mechanism.
It can learn the task in both supervised and unsupervised
manner using tailored loss functions.

More complex network architectures that combine global and
local (multi-head) attention (e.g., PGL-SUM [3]) or utilize data from
additional modalities (e.g., CLIP-It [27]) were not taken into ac-
count, in order to avoid comparisons across methods that apply
a significantly different processing pipeline. Such network archi-
tectures will be studied in future extensions of this work, aiming
to gain insights about the contribution of different levels of atten-
tion or the use of textual data, for explaining the output of video
summarization.

3.2 Explanation signals
In [4], the formulation of explanation signals was made based on
the values in the main diagonal of the attention matrix. In this
work, we augment the pool of signals used in [4], by introducing
two additional signals that are associated with the diversity of
attention weights. In particular, we take into account the following
explanation signals:

• Inherent Attention (IA) is formed using the weights in the
main diagonal of the attention matrix {𝑎𝑖,𝑖 }𝑇𝑖=1.

• Gradient of Attention (GoA) is formed using the gradi-
ents with respect to the weights in the main diagonal of the
attention matrix {∇𝑎𝑖,𝑖 }𝑇𝑖=1.

• Grad Attention (GA) is formed using the weights in the
main diagonal of the attention matrix, scored based on the
gradients for their computation {𝑎𝑖,𝑖 ⊙ ∇𝑎𝑖,𝑖 }𝑇𝑖=1.

• Input Norm Attention (NA) is formed using the weights
in the main diagonal of the attention matrix, scored based
on the norm of the Value-based transformed input vectors
in the attention mechanism {𝑎𝑖,𝑖 ⊙ ||𝒗𝒊 | |}𝑇𝑖=1.
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• Input Norm Grad Attention (NGA) is formed using the
weights in the main diagonal of the attention matrix, scored
based on the gradients for their computation and the norm of
the Value-based transformed input vectors in the attention
mechanism {𝑎𝑖,𝑖 ⊙ ∇𝑎𝑖,𝑖 ⊙ ||𝒗𝒊 | |}𝑇𝑖=1).

• Entropy of Attention (EoA) is formed by computing the
entropy of each row of the attention matrix according to the
following formula: −∑𝑇

𝑡=1 𝑎𝑖,𝑡 · 𝑙𝑜𝑔(𝑎𝑖,𝑡 ) (similarly to [5]).
• Diversity of Attention (DoA) is formed by computing
the normalized pairwise dissimilarity between the values of
each row of the attention matrix according to the following
formulas: 𝑑𝑖 =

∏𝑇
𝑡=1 (1−𝑎𝑖,𝑡 )/| |d| | where d = [𝑑1, 𝑑2, ..., 𝑑𝑇 ]

(similarly to [23]).

All the above, result in the definition of frame-level explanation
scores; then, video-fragment-level explanation masks (see Fig. 1) are
formed by computing fragment-level explanation scores (via mean
pooling) and selecting the𝑀 fragments with the highest scores.

3.3 Replacement functions
Similarly to [4], to examine the network’s input-output relationship
we apply the following replacement functions on parts of the input
corresponding to different video fragments:

• Slice-out removes the specified part from the original input,
thus resulting in a shorter input sequence.

• Input Mask replaces the specified part of the original input,
with a predefined mask which is equally-sized with this
fragment and is composed of deep feature representations
of black or white frames.

• Randomization replaces 50% of the elements of each feature
representation within the specified part of the original input,
using the corresponding elements from randomly-selected
feature representations from the remaining part of the input.

• Attention Mask sets the attention weights that relate with
the specified part of the original input equal to zero, such
that this part will not be forwarded in the network anymore.

3.4 Evaluation measures
As in [4], to quantify the impact of each video fragment in the
network’s output, after applying a replacement function we com-
pute the difference of estimates as Δ𝐸 (𝑿 , �̂�𝒌 ) = 𝜏 (𝒚,𝒚𝒌 ). In this
formula, 𝑿 is the set of original feature representations, �̂�𝒌 is the
updated set after replacing the features of the frames belonging to
the 𝑘𝑡ℎ video fragment, 𝒚 and 𝒚𝒌 are the outputs of the network
for 𝑿 and �̂�𝒌 , respectively, and 𝜏 is the Kendall’s 𝜏 correlation
coefficient [19]. Based on Δ𝐸, we assess the performance of each
explanation signal using the following evaluation measures:

• Discoverability+ (𝐷+) evaluates if fragments assigned with
higher explanation scores have a significant influence to
the network’s estimates. It is calculated as the average of
the obtained Δ𝐸 values after sequentially replacing parts of
the input corresponding to: a) the top-1%, 5%, 10%, 15% and
20% of the fragments with the highest explanation scores
(batch manner), and b) the 𝑀 fragments with the highest
explanation scores (one-by-one manner). The higher this
measure is, the greater the ability of the explanation signal to

correctly spot the video fragments with the highest influence
to the network.

• Discoverability- (𝐷−) evaluates if the fragments assigned
with lower explanation scores have small influence to the
network’s estimates. It is calculated as the average of the
obtained Δ𝐸 values after sequentially replacing parts of the
input corresponding to: a) the top-1%, 5%, 10%, 15% and 20%
of the fragments with the lowest explanation scores (batch
manner), and b) the𝑀 fragments with the lowest explana-
tion scores (one-by-one manner). The lower this measure
is, the greater the effectiveness of the explanation signal to
correctly spot video fragments with limited significance for
the network.

• Sanity Violation (𝑆𝑉 ) quantifies the ability of explanations
to correctly discriminate important from unimportant video
fragments. It is calculated by counting the number of cases
where the condition (𝐷+ > 𝐷−) is violated after sequentially
replacing parts of the input corresponding to: a) the top-1%,
5%, 10%, 15% and 20% of the fragments with the highest
and lowest explanation scores (batch manner), and b) the
𝑀 top- and less-scoring fragments in a pair-wise (one-by-
one) manner, and then expressing the computed value as a
fraction of the total number of replacements. This measure
ranges in [0, 1]; the closest its value is to zero, the greater
the reliability of the explanation signal.

• Rank Correlation (𝑅𝐶) examines if the assigned explana-
tion score to a video fragment is analogous with the frag-
ment’s influence to the network’s output. It is calculated
by computing the Spearman’s 𝜌 rank correlation coefficient
[21] between the assigned fragment-level explanation scores
and the obtained Δ𝐸 values after sequentially replacing each
one of them (thus, it is computed only when input replace-
ment is performed in a one-by-one manner). It ranges in
[−1, +1]; values close to +1 signify strong correlation, while
values close to 0 and −1 denote neutral and strongly negative
correlation, respectively.

4 EXPERIMENTS
This section describes the used datasets and implementation details,
and reports the results of our quantitative and qualitative analysis.

4.1 Datasets and implementation details
In our experiments we use the SumMe [15] and TVSum [33] datasets
for video summarization. SumMe is composed of 25 videos with
diverse video contents (e.g., covering holidays, events and sports),
captured from both first-person and third-person view. TVSum
contains 50 videos from 10 categories of the TRECVid MED task.
Videos are downsampled to 2 fps and deep feature representations
of the frames are obtained by taking the output of the pool5 layer of
GoogleNet [35] trained on ImageNet [10]. The parameter𝑀 , which
indicates the number of top- and lower-scoring fragments that are
being affected by the different replacement functions, as well as
the number of video fragments that are highlighted as the most
influential ones by the produced explanation mask, is set equal to
five. The size 𝐿 of the video fragments is set equal to 10 seconds
(i.e., 20 sampled frames). Similarly to [4], we increase the amount
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Table 1: Performance of the different explanation signals on the SumMe and TVSum datasets, after replacing parts of the input
in a batch manner. The arrows indicate the optimal (minimum or maximum) value for each measure.

CA-SUM
SumMe TVSum

IA NA GA GoA NGA EoA DoA IA NA GA GoA NGA EoA DoA
𝐷− (↓) 0.202 0.206 0.218 0.212 0.220 0.217 0.204 0.141 0.143 0.240 0.236 0.240 0.187 0.163
𝐷+ (↑) 0.250 0.238 0.196 0.195 0.195 0.210 0.233 0.217 0.215 0.123 0.123 0.123 0.162 0.202
𝑆𝑉 (↓) 0.336 0.368 0.560 0.552 0.560 0.552 0.384 0.224 0.268 0.844 0.832 0.844 0.680 0.360

VASNet
SumMe TVSum

IA NA GA GoA NGA EoA DoA IA NA GA GoA NGA EoA DoA
𝐷− (↓) 0.198 0.172 0.209 0.211 0.210 0.157 0.160 0.114 0.114 0.192 0.191 0.191 0.134 0.134
𝐷+ (↑) 0.144 0.156 0.143 0.143 0.142 0.177 0.158 0.152 0.154 0.094 0.094 0.094 0.133 0.128
𝑆𝑉 (↓) 0.648 0.568 0.672 0.688 0.688 0.400 0.536 0.380 0.304 0.736 0.740 0.732 0.580 0.560

SUM-GDA
SumMe TVSum

IA NA GA GoA NGA EoA DoA IA NA GA GoA NGA EoA DoA
𝐷− (↓) 0.131 0.146 0.133 0.133 0.134 0.151 0.131 0.119 0.105 0.133 0.133 0.131 0.129 0.121
𝐷+ (↑) 0.137 0.122 0.127 0.128 0.128 0.099 0.123 0.105 0.134 0.121 0.121 0.122 0.096 0.105
𝑆𝑉 (↓) 0.440 0.630 0.520 0.510 0.540 0.880 0.590 0.650 0.295 0.590 0.585 0.555 0.810 0.660

of experimental evaluations by assuming five different randomly-
created splits for each dataset1. For CA-SUM, we use the released
pre-trained models based on these splits 2. For VASNet and SUM-
GDA, we train models of these network architectures based on
the released code (VASNet3) and the descriptions in the associated
paper (SUM-GDA), and using the aforementioned data splits. In
the following, we report the average scores over these runs. The
code for reproducing the reported results is publicly-available at:
https://github.com/e-apostolidis/XAI-SUM.

4.2 Quantitative analysis
Table 1 reports the performance of each explanation signal on
videos from the SumMe and TVSum dataset, for each different net-
work architecture and after replacing parts of the input in a batch
manner. The reported values represent the average score across the
different replacement functions. These results show that, forming
explanations using the inherent attention weights (either purely
(IA) or after being scored according to the norm of the Value-based
transformed input vectors (NA)) is, in most cases, the best approach
according to the adopted evaluation approach. Such explanations
exhibit the optimal and/or near-optimal performance for all net-
work architectures on the videos of TVSum, as indicated also by the
Sanity Violation scores - which, in our perspective, is an important
criterion for the trustworthiness of an explanation signal - in the
graph on the right part of Fig. 2. Moreover, they seem to be the most
appropriate for producing explanations of the output of CA-SUM
and SUM-GDA for the videos of SumMe, as also shown by the low
Sanity Violation scores of the IA-based explanation signal in the
graph on the left part of Fig. 2. On average, they achieve the low-
est/highest Discoverability-/+ scores and produce explanations that,

1Publicly-available at: https://github.com/e-apostolidis/CA-SUM
2Accessible at: https://zenodo.org/record/6562992
3Accessible at: https://github.com/ok1zjf/VASNet

in most cases (approx. 55−65% on SumMe and 70−75% on TVSum),
correctly discriminate the most and least influential fragments of
the video. The only exception is observed in the case of VASNet for
the SumMe dataset, where the use of the entropy of the attention
weights to form explanations (EoA) appears as the most effective
approach. As depicted also in the graph on the left part of Fig. 2, the
performance of the relevant explanation signal significantly sur-
passes the performance of other signals and is comparable only to
the performance of explanations formulated based on the diversity
of attention weights (DoA). Taking into account the performance of
EoA-based and DoA-based explanations for VASNet also on the TV-
Sum videos - which is lower than the performance of IA/NA-based
explanations but clearly higher than the one of gradient-based ex-
planations (GA, GoA, NGA), as also shown in the graph on the
right part of Fig. 2 - we argue that the attention mechanism of this
network architecture models the dependence of video frames using
more varying attention weights; thus, the use of estimates about
the entropy (called attentive uniqueness in [5]) and diversity of the
attention weights as proposed, can lead to well-performing explana-
tion signals. On the contrary, network architectures that integrate
mechanisms for estimating the attentive diversity (SUM-GDA) and
uniqueness of the video frames (CA-SUM) seem to produce atten-
tion weights that are already descriptive enough and can be directly
used to form explanation signals. Finally, explanations formed using
the gradients of the attention weights (GA, GoA, NGA) are, in gen-
eral, the worst-performing ones. In most cases, such explanations
result in higher/lower𝐷−/𝐷+ scores than the ones obtained for non-
gradient-based signals (IA, NA, EoA, DoA), and most frequently,
they fail to distinguish the most and least influential fragments
of the video (55 − 65% and 55 − 85% of the cases on SumMe and
TVSum, respectively), as also shown in the graphs of Fig. 2.

Table 2 reports the experimental results when the replacement
of parts of the input to the network architectures is performed in a
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Figure 2: Sanity violation scores of the different explanation signals on the output of the considered network architectures for
the videos of SumMe (left part) and TVSum (right part) datasets, when input replacements are made on a batch manner.

Table 2: Performance of the different explanation signals on the SumMe and TVSum datasets, after replacing parts of the input
in a one-by-one manner. The arrows indicate the optimal (minimum or maximum) value for each measure.

CA-SUM
SumMe TVSum

IA NA GA GoA NGA EoA DoA IA NA GA GoA NGA EoA DoA
𝐷− (↓) 0.162 0.161 0.177 0.176 0.175 0.173 0.169 0.112 0.112 0.148 0.147 0.148 0.130 0.119
𝐷+ (↑) 0.181 0.179 0.167 0.166 0.167 0.172 0.177 0.141 0.141 0.104 0.104 0.104 0.119 0.134
𝑆𝑉 (↓) 0.352 0.368 0.584 0.568 0.552 0.560 0.384 0.204 0.212 0.812 0.788 0.836 0.580 0.396
𝑅𝐶 (↑) 0.182 0.130 -0.030 -0.075 -0.068 -0.020 0.118 0.303 0.295 -0.088 -0.166 -0.092 -0.073 0.163

VASNet
SumMe TVSum

IA NA GA GoA NGA EoA DoA IA NA GA GoA NGA EoA DoA
𝐷− (↓) 0.116 0.109 0.118 0.119 0.118 0.102 0.108 0.065 0.066 0.090 0.089 0.089 0.072 0.074
𝐷+ (↑) 0.098 0.103 0.098 0.098 0.098 0.110 0.106 0.080 0.080 0.058 0.057 0.057 0.072 0.071
𝑆𝑉 (↓) 0.632 0.528 0.640 0.640 0.656 0.400 0.512 0.364 0.336 0.696 0.716 0.704 0.500 0.512
𝑅𝐶 (↑) -0.199 -0.022 0.306 0.314 0.298 0.091 -0.048 0.217 0.217 -0.021 -0.034 -0.020 0.015 0.000

SUM-GDA
SumMe TVSum

IA NA GA GoA NGA EoA DoA IA NA GA GoA NGA EoA DoA
𝐷− (↓) 0.073 0.081 0.076 0.076 0.076 0.079 0.078 0.061 0.054 0.062 0.062 0.062 0.062 0.061
𝐷+ (↑) 0.078 0.073 0.072 0.073 0.072 0.069 0.075 0.057 0.066 0.060 0.060 0.060 0.056 0.058
𝑆𝑉 (↓) 0.410 0.630 0.580 0.530 0.570 0.700 0.570 0.615 0.265 0.510 0.485 0.515 0.730 0.610
𝑅𝐶 (↑) 0.046 -0.110 -0.092 -0.097 -0.124 -0.166 0.041 -0.005 0.104 -0.080 -0.068 -0.079 -0.072 -0.073

one-by-onemanner. These results are, to a large extent, alignedwith
the ones in Table 1. Explanation signals formed using the inherent
attentionweights (IA) or a scored version of theseweights according
to the norm of the Value-based transformed input vectors (NA)
exhibit the optimal performance across all network architectures on
TVSum, as denoted by the low Sanity Violation scores in the graph
on the right part of Fig. 3. With respect to SumMe, IA-based signals
appear to be the most appropriate for explaining the output of CA-
SUM and SUM-GDA, as indicated also by the low scores in the graph
on the left part of Fig. 3. As before, using estimates about the entropy
and diversity of the attention weights appears to be beneficial when
producing explanations for the output of VASNet for the videos

of this dataset (see also the corresponding scores in the graph on
the left part of Fig. 3). All the aforementioned explanation signals
are associated with the lowest/highest Discoverability-/+ scores
and the lowest Sanity Violation scores. In addition, based on the
observed Rank Correlation they are capable of assigning fragment-
level explanation scores that, in most cases, are positively correlated
with the fragments’ influence to the networks’ output. On the
contrary, gradient-based explanations (GA, GoA, NGA) perform
worse. They violate the sanity test most frequently (as shown in
the graphs of Fig. 3) and they assign fragment-level explanation
scores that are (in all cases but one) negatively correlated with the
influence of each fragment to the networks’ output.
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Figure 3: Sanity violation scores of the different explanation signals on the output of the considered network architectures for
the videos of SumMe (left part) and TVSum (right part) datasets, when input replacements are made on a one-by-one manner.

The experimental results discussed above show that, in general,
the use of the inherent attention weights - either in their original
form or after a scoring process based on the norm of the Value-
based transformed input vectors - to form explanations, is the best
choice. The use of the inherent attention weights appears to be
more suitable for explaining the output of network architectures
including mechanisms for estimating the attentive diversity (SUM-
GDA) and uniqueness of the video frames (CA-SUM), while taking
into account estimates about the strength of the input vectors in the
attention mechanism (computed by the norm of the Value-based
transformed input vectors) can be beneficial in some cases (VASNet
and SUM-GDA). Moreover, the entropy of the inherent attention
weights is another option in the case of network architectures
that do not involve any post-processing of the computed attention
matrix (VASNet). Finally, the use of gradients is not a good choice,
since it leads to explanation signals that fail more frequently to
discriminate the most and least influential fragments of the video,
and thus to provide reliable explanations about the output of the
considered network architectures.

4.3 Qualitative analysis
In our qualitative analysis we used the CA-SUM network architec-
ture and formed explanation masks using the inherent attention
weights. According to the results in Tables 1 and 2, this combination
is associated with constantly better performance (in terms of all the
used evaluationmeasures) compared to the performance of themost
effective explanation signals for the other network architectures.
So, in the following we report the findings of our analysis using the
produced explanation mask by the inherent attention weights (IA),
for two videos from the TVSum and SumMe datasets. Similarly to
[4], in Figs. 4 and 5 each video fragment is illustrated using one
key-frame that was selected based on its representativeness. The
red-coloured bounding boxes signify the most influential fragments
according to the used explanation signal, and the blue-coloured
bounding boxes indicate the top-scoring fragments based on the
CA-SUM estimates about the frames’ importance.

In the example video of Fig. 4, the focus of the attention mecha-
nism is mainly put on the veterinarian with the dog, and the ear

cleaning process. Parts of the video showing text-written tips, close-
ups of the veterinarian alone, and the cleaning product, are less
important according to the modeled video context. Using this in-
formation, CA-SUM assigns higher importance scores to parts of
the video showing the veterinarian with the dog, explaining and
performing the ear cleaning process. In the example video of Fig. 5,
the attention mechanism seems to concentrate mainly on parts of
the video showing the kids playing in the leaves. Other parts of the
video presenting the front-yard of the house, the cars in the parking,
and a distant shot of the kids, seem to be less attractive. Based on
the behavior of the attention mechanism, CA-SUM promotes parts
of the video that are mainly associated with the kids playing in
the leaves, as four out of the five top-scoring fragments contain
this visual content. These paradigms lead to findings similar to the
ones discussed in [4]; using the inherent attention weights to form
explanations as proposed in [4] could enable a level of understand-
ing about the focus of attention, and support the explanation of
attention-based video summarization networks.

5 CONCLUSIONS
In this paper, we reported our study on the use of attention for
explaining video summarization. Building on a recent work that
formulated this task and defined an evaluation protocol [4], we
performed a more extended investigation that included additional
network architectures and novel explanation signals. Our experi-
mental evaluations involved three network architectures (CA-SUM,
VASNet, SUM-GDA), seven explanation signals, and two datasets
(SumMe, TVSum) for video summarization. Our findings showed
that inherent attention can be used to explain networks estimating
attentive diversity (SUM-GDA) and uniqueness (CA-SUM). The ex-
planation of simpler architectures (VASNet) requires to also take
into account estimates about the strength of the input vectors, while
another option is to consider the entropy of attention weights.
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Figure 4: The five most influential fragments (in red-coloured bounding boxes) and the five top-scoring fragments (in blue-
coloured bounding boxes) for a TVSum video, titled “How to Clean Your Dog’s Ears - Vetoquinol”.

Figure 5: The five most influential fragments (in red-coloured bounding boxes) and the five top-scoring fragments (in blue-
coloured bounding boxes) for a SumMe video, titled “Kids playing in leaves”.
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